Leif Sundheim
Pensjonist
Forfattere
Hadush Tsehaye Beyene Leif Sundheim Arne Tronsmo May Bente Brurberg Dereje Assefa Anne Marte TronsmoSammendrag
Fusarium verticillioides is the most common fungal pathogen of maize in Ethiopia. Many strains of this pathogen produce fumonisin myotoxins that are harmful to human and animal health. This study was conducted to determine the fumonisin-producing ability of isolates of F. verticillioides isolated from maize kernels collected from different maize- growing areas of the country. Eighty F. verticillioides isolates were grown on autoclaved maize cultures for one month, and the fumonisin content was quantified using Enzyme Linked Immunosorbent Assay (ELISA). All the 80 isolates evaluated were able to produce detectable levels of total fumonisins in the maize culture with values ranging from 0.25 to 38.01 mg of the toxin per kg of culture material (fungal biomass and maize kernels). The mean levels of total fumonisins produced by the F. verticillioides isolates were not significantly (p>0.05) different among maize growing areas, however, the total fumonisins levels produced by isolates obtained from the same area as well as agroecological zones were wide-ranging. The results indicate that the majority (57.5%) of the F. verticillioides isolates associated with maize grains in Ethiopia produced total fumonisins >4 mg/kg, while 35% of the isolates produced total fumonisins <2 mg/kg. The widespread occurrence of higher fumonisin-producing strains across all maize-growing areas in Ethiopia indicates a possible food safety risk. Thus, efforts should be made to prevent the spread of this fungus with good agronomic practices and to implore all possible ways to avoid maize contamination with fumonisin both in the field and in storage.
Sammendrag
Maize and other cereals are the commodities most contaminated with fumonisins. The maize acreage is increasing in Africa, and the maize harvest provides important foods for humans and feeds for domestic animals throughout the continent. In North Africa, high levels of fumonisins have been reported from Algeria and Morocco, while low levels have been detected in the rather few fumonisin analyses reported from Tunisia and Egypt. The West African countries Burkina Faso, Cameroon, Ghana, and Nigeria all report high levels of fumonisin contamination of maize, while the few maize samples analysed in Togo contain low levels. In Eastern Africa, high levels of fumonisin contamination have been reported from the Democratic Republic of Congo, Ethiopia, Kenya, Tanzania, and Uganda. The samples analysed from Rwanda contained low levels of fumonisins. Analysis of maize from the Southern African countries Malawi, Namibia, South Africa, Zambia, and Zimbabwe revealed high fumonisin levels, while low levels of fumonisins were detected in the few analyses of maize from Botswana and Mozambique.
Forfattere
Hanno Sandvik Olga Hilmo Snorre Henriksen Reidar Elven Per Arvid Åsen Hanne Hegre Oddvar Pedersen Per Anker Pedersen Heidi Solstad Vigdis Vandvik Kristine Bakke Westergaard Frode Ødegaard Sandra Charlotte Helene Åström Hallvard Elven Anders Endrestøl Øivind Gammelmo Bjørn Arild Hatteland Halvor Solheim Björn Nordén Leif Sundheim Venche Talgø Tone Falkenhaug Bjørn Gulliksen Anders Jelmert Eivind Oug Jan Henry Sundet Elisabet Forsgren Anders Gravbrøt Finstad Trygve H. Hesthagen Kjell Harald Nedreaas Rupert Wienerroither Vivian Husa Stein Fredriksen Kjersti Sjøtun Henning Steen Haakon Hansen Inger Sofie Hamnes Egil Karlsbakk Christer Magnusson Bjørnar Ytrehus Hans Christian Pedersen Jon Swenson Per Ole Syvertsen Bård Gunnar Stokke Jan Ove Gjershaug Dag Dolmen Gaute Kjærstad Stein Ivar Johnsen Thomas Correll Jensen Kristian Hassel Lisbeth GederaasSammendrag
1. Due to globalisation, trade and transport, the spread of alien species is increasing dramatically. Some alien species become ecologically harmful by threatening native biota. This can lead to irreversible changes in local biodiversity and ecosystem functioning, and, ultimately, to biotic homogenisation. 2. We risk-assessed all alien plants, animals, fungi and algae, within certain delimitations, that are known to reproduce in Norway. Mainland Norway and the Arctic archipelago of Svalbard plus Jan Mayen were treated as separate assessment areas. Assessments followed the Generic Ecological Impact Assessment of Alien Species (GEIAA) protocol, which uses a fully quantitative set of criteria. 3. A total of 1519 species were risk-assessed, of which 1183 were species reproducing in mainland Norway. Among these, 9% were assessed to have a severe impact, 7% high impact, 7% potentially high impact, and 49% low impact, whereas 29% had no known impact. In Svalbard, 16 alien species were reproducing, one of which with a severe impact. 4. The impact assessments also covered 319 so-called door-knockers, i.e. species that are likely to establish in Norway within 50 years, and 12 regionally alien species. Of the door-knockers, 8% and 10% were assessed to have a severe and high impact, respectively. 5. The impact category of most species was driven by negative interactions with native species, transformation of threatened ecosystems, or genetic contamination. The proportion of alien species with high or severe impact varied significantly across the different pathways of introduction, taxonomic groups, time of introduction, and the environments colonised, but not across continents of origin. 6. Given the large number of alien species reproducing in Norway and the preponderance of species with low impact, it is neither realistic nor necessary to eradicate all of them. Our results can guide management authorities in two ways. First, the use of quantitative assessment criteria facilitates the prioritisation of management resources across species. Second, the background information collected for each species, such as introduction pathways, area of occupancy and ecosystems affected, helps designing appropriate management measures.