Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

Red fescue (Festuca rubra L.) is the preferred turfgrass species for low-input golf course putting greens in Northern Europe. While it is well recognized that fescue requires less fertilizer than bentgrasses (Agrostis spp.) or annual bluegrass (Poa annua L.), the optimal fertilizer distribution throughout the growing season has not been investigated. Our objective was to determine the effects of three seasonal fertilizer distributions on turfgrass quality, seasonal growth rates, root development, and competition from annual bluegrass on a sand-based red fescue putting green at the NIBIO (Norwegian Institute of Bioeconomy Research) Turfgrass Research Center, Landvik, Norway (58° N). All fertilizer treatments comprised weekly inputs of a complete, liquid fertilizer solution for a total of 11 g N m−2 year−1, but the inputs were distributed with (1) the highest weekly rates from early May to mid-summer (SPRING+), (2) equal weekly rate from early May through late September (FLAT), or (3) the highest weekly rates from mid-August to late September (FALL+). SPRING+ fertilization resulted in higher turfgrass quality, deeper roots, and, in the second experimental year, less annual bluegrass than FALL+ fertilization. The advantage of FALL+ fertilization was faster green-up and enhanced growth in September, October, and April, but this came at the expense of more annual bluegrass. Results are discussed in light of previously published data on temperature and fertilizer requirements for the growth of red fescue versus annual bluegrass.

Sammendrag

Timothy ( Phleum pratense L.) is the predominant forage grass species in the northern parts of the Nordic region. Because of the long andharsh winters and a short growing season, most of it with continuous light, the need for locally adapted timothy seed has been recognizedfor more than a century. However, the seed production of timothy in these marginal environments is unpredictable with acceptable seedyield and quality on average only every third year. Thus, a multiplication scheme for the northern cultivars was established with only pre-basic seed produced in the north, and basic and certified seed produced further south to secure enough seed of good quality. In recentdecades this scheme has been more or less abandoned with continous generations produced in the south. Farmers are complaining andare questioning whether the cultivars has changed and lost winter hardiness. We studied freezing and ice-encasement tolerance of generations of the the northern timothy cultivars ‘Engmo’ (old landrace) and ‘Noreng’(synthetic) multiplied for one, two or three generations in Central, Southern and Northern Norway. The trials introduce very largedifferences in mean temperature, growing degree days and photoperiod between place of parental origin and sites of multiplication so theeffects on fitness observed could arise from both selection and and induced epigenetic changes. Large changes (loss) in freezing and ice-encasement tolerance were observed, especially at the southern location in the first generation.The cultivars behaved differently and there were significant interactions. The extreme phenotypic changes observed might be explained bygenetic selection or epigenetic memory of the environmental conditions experienced during seed production, or a combination of the two.We are currently analysing GBS data of all generations and this will be used to test whether genetic shifts has occured during themultiplication in the different environments.