Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Seed production is an important element of weed population dynamics, and weed persistence relies upon the soil seed bank. In 2017 and 2018, we studied the relationship between the aboveground dry biomass of common weed species and their seed production. Weeds were selected randomly in the fields, and we surrounded the plants with a porous net to collect shed seeds during the growth season. Just before crop harvest, weeds were harvested, the plants’ dry weights were measured, and the number of seeds retained on the weeds was counted. A linear relationship between the biomass and the number of seeds produced was estimated. This relationship was not affected by year for Avena spica-venti, Chenopodium album, Galium aparine, or Persicaria maculosa. Therefore, the data of the two seasons were pooled and analysed together. For Alopecurus myosuroides, Anagallis arvensis, Capsella bursa-pastoris, Geranium molle, Polygonum aviculare, Silene noctiflora, Sonchus arvensis, Veronica persica, and Viola arvensis, the relationship varied significantly between the years. In 2017, the growing season was cold and wet, and the slope of the regression lines was less steep than in the dry season in 2018 for most species. Capsella bursa-pastoris was the most prolific seed producer with the steepest slope.

Sammendrag

Harvest Weed Seed Control (HWSC) systems are used to collect and/or kill weed seeds in the chaff fraction during grain harvest. While collecting chaff reduces the weed infestation in the following years, a new biomass feedstock is created. Chaff mainly consists of husk and straw. There is a potential energetic utilization of chaff. It can also be used as a material for construction (e.g., insulating boards, cardboard, bedding), soil improvement (e.g., mulch, mushroom compost) and agricultural use (e.g., weed growth inhibitor, animal diet). Using chaff directly is unfavorable because of low bulk density; therefore, compressing chaff into pellets optimizes its handling. We have assessed how pelletizing would affect germination of weed seeds bearing in the chaff if the collected chaff is pelletized for further utilization. To test this, we mixed original wheat chaff and fine wheat chaff (pretreated by sieving) with each of the weed species Tripleurospermum inodorum and Centarea cyanus seeds separately. Approximately 2000 seeds of each weed species were added to 2500 g of chaff (20 % moisture). Samples were pelletized using the Kahl Pelleting Press 14-175. Each treatment was replicated four times. Afterwards pelletized samples were spread evenly on the soil surface in 14 × 16 cm boxes and covered by a thin layer of soil/sand. Unpelletized chaff samples were used as control. Boxes were placed in greenhouse and watered from the bottom and seed germination was followed for a month. While on average 22 and 59 % seed germination of T. inodorum and C. cyanus were observed in wheat chaff control samples respectively, no weed seed germination was observed in pelletized fine and original wheat chaff samples. Consequently, we find that the pelletizing process of collected chaff destroys the weed seeds in it.

Sammendrag

Harvest weed seed control takes advantage of seed retention at maturity by collecting weed seeds as they pass through the harvester. We assessed the seed production and shedding pattern of common weed species in two wheat and two oat fields in Denmark. The aim was to evaluate the possibility of harvesting retained seeds on weeds at crop harvest by a combine harvester based on estimation of weeds seed retention. Before flowering, ten plants of each weed species were selected and surrounded by a seed trap comprising of a porous net. When the plants started shedding seeds, the seeds were collected from the traps and counted weekly until crop harvest. Just before crop harvest, the retained seeds on the plants were counted and the ratio of harvestable seeds and shed seeds during the growing season were determined. The seed production and shedding patterns varied between the species. In oat, Anagallis arvensis L., Capsella bursa-pastoris (L.) Medik., Chenopodium album L., Fallopia convolvulus (L.) Á. Löve, Geranium molle L., Persicaria maculosa Gray, Polygonum aviculare L., Silene noctiflora L., Sinapis arvensis L., Sonchus arvensis L., Spergula arvensis L., Stellaria media (L.) Vill.,Veronica persica Poir., and Viola arvensis Murray retained on average 61, 52, 67, 44, 58, 32, 59, 95, 67, 23, 45, 56, 51, and 33%, respectively, of their produced seeds at crop harvest. In wheat, Alopecurus myosuroides Huds. and Apera spica-venti (L.) P. Beauv. retained on average 34 and 33%, respectively, of their seeds at harvest. Silene noctiflora was classified as a good target for harvest weed seed control; A. myosuroides, A. spica-venti, C. bursa-pastoris, C. album, F. convolvulus, G. molle, P.maculosa, Sinapis arvensis, Sonchus arvensis, Spergula arvensis and V. arvensis were classified as intermediate targets; and A. arvensis, P. aviculare, S. media and V. persica were classified as poor targets. The research shows that there is a great potential to reduce the input of weed seeds to the soil seed bank by harvest weed seed control. Keywords: Harvest weed seed control; Soil seed bank ; Weed seed retention