Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

The rapid conversion of tropical rainforests into monoculture plantations of rubber (Hevea brasiliensis) in Southeast Asia (SEA) necessitates understanding of rubber tree physiology under local climatic conditions. Frequent fog immersion in the montane regions of SEA may affect the water and carbon budgets of the rubber trees and the plantation ecosystems. We studied the effect of fog on various plant physiological parameters in a mature rubber plantation in southwest China over 3 years. During the study period, an average of 141 fog events occurred every year, and the majority occurred during the dry season, when the temperature was relatively low. In addition to the low temperature, fog events were also associated with low vapor pressure deficit, atmospheric water potential, relative humidity and frequent wet-canopy conditions. We divided the dry season into cool dry (November-February) and hot dry (March-April) seasons and classified days into foggy (FG) and non-foggy (non-FG) days. During the FG days of the cool dry season, the physiological activities of the rubber trees were suppressed where carbon assimilation and evapotranspiration showed reductions of 4% and 15%, respectively, compared to the cool dry non-FG days. Importantly, the unequal declines in carbon assimilation and evapotranspiration led to enhanced crop water productivity (WPc) on cool dry FG days but insignificant WPc values were found between FG and non-FG days of the hot dry season. Our results suggest that, by regulating plant physiology, fog events during the cool dry season significantly reduce water demand and alleviate water stress for the trees through improved WPc.

Til dokument

Sammendrag

Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.

Til dokument

Sammendrag

Production of biochar from corn cob and corn stalk has gained great interest for efficient waste management with benefits of improving soil properties, increasing crop productivity, and contributing to carbon sequestration. This study investigated slow pyrolysis of corn cob and corn stalk at 600 °C to characterize yields and properties of products, with focus on solid biochar. Spruce wood, a rather well studied woody biomass, was also included for comparison purposes. It was observed that yields of biochar and condensates from corn cob, corn stalk, and spruce wood were comparable. However, gas release profiles and yields from the three biomasses were quite different, which is mainly related to the different chemical compositions (i.e., hemicellulose, cellulose, lignin, and inorganic species) of the studied raw feedstocks. The produced biochars were analyzed for proximate analysis, CHNS-elemental analysis, specific surface area and specific pore volume for pores in the nm-range, inorganic composition, solid functional groups, and aromaticity. The corn cob and corn stalk biochar presented significantly higher concentration of inorganic elements, especially P and K, favoring soil application. The SEM analysis results showed that the spruce wood biochar has different microstructure than corn cob and corn stalk biochars. Condensates and light gases, as by-products from biochar production, contained over 50% of the energy and 40% of the total carbon of the initial biomass. Utilization of the condensates and light gases as valuable resources is therefore critical for improving environmental and energy benefits of the biochar production process.