Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Thiago InagakiAbstract
No abstract has been registered
Authors
Thiago InagakiAbstract
No abstract has been registered
Authors
Kjetil FadnesAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
1. Root and butt rot caused by pathogenic fungi in the genera Heterobasidion and Armillaria is a pressing issue in managed Norway spruce forests. The disease results in financial losses for the forest owners and reduces the volume of wood that can be used in long-lived products. Pathogenic wood decay fungi spread either with the aid of airborne spores or via mycelial growth among neighbouring trees, the latter leading to clustering (tendency of decayed trees to be in close proximity relative to their neighbouring trees) of decay-affected trees in forests. Understanding the spatial patterns of the decay-affected trees at the forest stand level is vital for designing management strategies to address this problem. 2. We examined decay clustering in 273 clear-cut Norway spruce stands in Norway using harvester-recorded data on spatial occurrence of decayed and healthy Norway spruce trees. We tested clustering using three global-cluster tests that account for population density and distribution, evaluating clustering without identifying specific cluster locations. 3. The proportions of clustered and non-clustered stands differed depending on the statistical test used for clustering assessment, resulting in overall agreement of 32.8% for clustered and 36.9% for non-clustered. Clustered stands exhibited a median cluster distance (maximum distance between the decay-affected trees within a cluster) of 12 m (Inter-Quantile Range, IQR, 6–20 m) and a median of 6 (IQR 3–16) nearest neighbour trees (number of decayed trees forming a cluster), estimates comparable with prior studies focused on assessment of trees infected by mycelial spread of the same fungal individual. The decay incidence in the clustered stands was 16.24%, while the non-clustered stands had a butt-rot incidence of 20.97%. In clustered stands the average number of trees per hectare was higher (693) than in non-clustered stands (553). 4. Synthesis and applications: Our study demonstrates that Norway spruce stands display a diverse range of spatial patterns of butt rotted trees. We found that higher densities of Norway spruce trees probably facilitate the vegetative spread of pathogenic wood decay fungi, leading to clustering of decay-affected trees. To disrupt the spread of decay fungi between tree generations, precision planting of trees other than Norway spruce around infested stumps of prior generation trees has been recommended by earlier studies. We discussed the potential of using harvester-derived geoposition data for butt-rotted trees upon planning and execution of forest regeneration.
Authors
Stephen Amiandamhen Synne Strømmen Ingeborg Olsdatter Ohren Nordraak Andreas Treu Erik LarnøyAbstract
This study investigated the potential of wood particles from Ciol®-treated wood in particleboard production. Ciol® is a renewable formulation from water, citric acid, and sorbitol, which has been commercially developed as a promising alternative for wood modification. Radiata pine wood was impregnated with 60% and 85% concentrations of the Ciol® solution for 150 mins. The impregnated boards were cured and subsequently planned. Particleboards were thereafter produced from the wood shavings using urea formaldehyde (UF) and melamine urea formaldehyde resin (MUF). The boards were produced with or without the use of ammonium nitrate as a hardener. The wood particles and produced boards were characterized via analytical techniques and standard test methods. The effect of Ciol® treatment and its concentration on the properties of the shavings and the particleboards was investigated as well as the effect of the resin type on the panel properties. The use of MUF without the hardener gave the best bending strength of 13 N/mm² and modulus of elasticity of 3187 N/mm². However, there was no significant difference in the results obtained when the hardener was added to MUF resins. Recycling Ciol®-treated wood shavings in particleboard production proved to be a promising approach with MUF resins.
Authors
Maria Dietrich Florian Biatel Robert Kozera Bente FøreidAbstract
No abstract has been registered
Authors
Randi Berland FrøsethAbstract
No abstract has been registered
Authors
Dalphy Ondine Camira HarteveldAbstract
No abstract has been registered
Abstract
Tip rot of carrot significantly reduces root quality and contributes to the high-level rejection during sorting and packaging in Norway. The rot can be dry, or wet, and vary in colour from light brown to dark brown. Diagnosis of a plant disease involves close examination of the symptoms, detection and identification of the causal agent(s), and confirmation of pathogenicity. The objective of this study was to identify the causal agent(s) of tip rot in carrot. Fungi and bacteria were isolated from multiple carrots with tip rot symptoms and used for inoculation of healthy carrots to determine pathogenicity and also for DNA extraction, sequencing of commonly used genes for identification and barcoding genes and DNA metabarcoding. For isolation and inoculation, we developed a method allowing individual carrots to remain upright without touching each other within an incubation box. For morphological identification of causal agents, we found that a combination of methods such as isolation on potato carrot agar, disinfection of infected tissue followed by moist incubation, and inoculation followed by incubation at room temperature for 24 h, and then at 0-6°C were optimal methods for the identification of tip rot pathogens of carrot. Based on the combination of molecular and morphological identification methods, we found that tip rot of carrots is a disease complex caused by several fungi but principally Mycocentrospora acerina and Cylindrocarpon destructans. Diagnosis of postharvest diseases is often a complex problem, and this research demonstrates that a combination of methods is a useful approach. Furthermore, the study indicated that the common approach of trying to associate a disease with a single causal agent does not work for all postharvest diseases. The possibility of multiple causal agents and predisposing factors must be considered, and we should be cautious not to jump to a hasty decision.