Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Mari Talgø Syvertsen Payel Bhattacharjee Igor A. Yakovlev Torstein Tengs Kaia Slågedal Mallikarjuna Rao Kovi Marcos Viejo Carl Gunnar Fossdal Jorunn Elisabeth OlsenAbstract
No abstract has been registered
Authors
Mari Talgø Syvertsen Payel Bhattacharjee Igor A. Yakovlev Torstein Tengs Kaia Slågedal Mallikarjuna Rao Kovi Marcos Viejo Carl Gunnar Fossdal Jorunn Elisabeth OlsenAbstract
No abstract has been registered
Authors
Mari Talgø Syvertsen Payel Bhattacharjee Igor A. Yakovlev Torstein Tengs Kaia Slågedal Mallikarjuna Rao Kovi Marcos Viejo Carl Gunnar Fossdal Jorunn Elisabeth OlsenAbstract
No abstract has been registered
Authors
Adriana Dorota Osinska Ahmed Bargheet Agnieszka Cuprys Ida Marie Bardalen Fløystad Hans Geir Eiken Kenneth William Lindstedt Veronika Kucharová Pettersen Arnfinn Sundsfjord Yngvild WastesonAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Ademir de Oliveira Ferreira João Carlos de Moraes Sá Rattan Lal Gabriel Barth Thiago Inagaki Daniel Ruiz Potma Gonçalves Clever Briedis Aline Roma Tomaz William Ramos da SilvaAbstract
Land management systems that comprise the principles of conservation agriculture (CA) can lead to soil organic carbon (SOC) gains over time. Nonetheless, how fertilization regimes interfere with their performance in highly weathered soils is still uncertain. This study presents results on SOC storage, crop yield, and soil resilience from a long-term experiment in southern Brazil (Ponta Grossa – Paraná State) 26 years after its establishment in 1989 combining a gradient of soil disturbance through diverse soil management strategies with contrasting fertilization regimes. We hypothesized that preserving soil structure rebuilt over time through no-till system plays a significant role in SOC persistence and the fertilization regime can impact land management performance on soil resilience and crop yield. The experimental design was laid out as a split plot through completely randomized blocks. The main plots comprised the treatments related to soil management systems: 1) conventional plow-based tillage – CT; 2) minimum tillage (Chiselling replacing plowing) – MT; 3) no-till with one chisel plowing every three years – NTch; and 4) continuous no-till system – NTS. The sub-plots comprised full crop fertilization (FCF) for all crops and low crop fertilization (LCF) by suppressing K and P fertilization and maintaining N in broadcast application. SOC stocks significantly improved as the soil disturbance diminished, resulting in higher soil resilience indexes for NTS and NTch. Differences in SOC stocks between the contrasting treatments NTS and CT were higher under low fertilization, resulting in C and N sequestration rates of 1.14 and 0.14 Mg ha−1 year−1 under LCF compared to 0.77 and 0.08 Mg ha−1 yr−1 in FCF at the 0–100 cm layer. Such higher differences were induced by overall higher SOC stocks of CT when under FCF and higher SOC stocks in subsoil depths promoted by NTS when under LCF. High fertilization treatments produced cumulative yields 1.5 times higher for soybeans and 2.5 times higher for corn throughout the 26 years of the experiment. Labile C fractions extracted by hot water (HWEOC) and K-permanganate (POXC) were systematically increased as the disturbance diminished. Gains in labile fractions were promoted in deeper layers in lower disturbance treatments (NTch and NTS). We conclude that combining conservation agriculture principles ultimately defined the potential for SOC sequestration. The high soil resilience under the NTS in this research indicates a considerable potential to reverse the soil degradation and decline of the SOC and labile fractions by conversion to intensive NTS (high and diversified annual C input) associated with absence of soil disturbance.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Per Kristian Alnes Gudbrand Lien Erik Haugom Iveta Malasevska Ørjan MydlandAbstract
We evaluate a fast-track ticket alternative in the alpine skiing industry using data from a survey of skiers at a major ski resort in Norway. We estimate price-response functions, optimal prices for fast-track tickets and use regression to analyse the most important characteristics of skiers who demand the fast-track ticket alternative. Our findings show that the additional willingness to pay for a fast-track ticket over the standard day-pass ticket ranges from 4% (one minute waiting time) to 13% (20 minutes waiting time). The skiers with the highest demand for the fast-track ticket alternative are typically single men living near the ski resort who do most of their alpine skiing during the weekend. Some respondents expressed critical concerns regarding the fast-track ticket alternative, and we therefore discuss some customer acceptance challenges and ethical aspects associated with such an alternative.
Authors
Rasmus Bang Stine Samsonstuen Bjørn Gunnar Hansen Mario Guajardo Hanne Møller Jon Kristian Sommerseth Julio C. Goez Ola FlatenAbstract
CONTEXT Researchers have identified numerous strategies to improve economic performance and reduce greenhouse gas (GHG) emission intensity in combined milk and beef production on dairy farms. However, there remains a need to better understand how the effectiveness of these strategies varies under different operational conditions. OBJECTIVE This study aims to examine how the economic and GHG emission intensity mitigation effectiveness of increased milk yield, extended longevity of dairy cows, reduced age at first calving, and intensified beef production from bulls depend on operational conditions in dual purpose cattle systems. METHOD We present a quantitative framework to (1) economically optimize production at farm level under various constraints and (2) calculate corresponding GHG emissions. The framework is tailored for Norwegian dual-purpose cattle systems and used to assess the economic and GHG emission intensity mitigation effects of incremental adjustments in relevant decisions. RESULTS AND CONCLUSIONS The results show that increased milk yield, extended productive life of dairy cows, reduced age at first calving, and lower slaughter age of bulls can lead to economic and climatic win-wins in terms of higher gross margins and reduced emissions per kg of protein produced. However, they may also result in lose-win and win-lose outcomes depending on the operational conditions. All four measures free up roughage production capacity, which, if used to maintain/increase milk and/or beef production, typically results in economic gains. However, if e.g., the available milk quota or space prevent this, economic losses may occur. The climate impact also depends on how the freed-up capacity is used: if it boosts production, the effects vary based on the scale and type of increase and the farm's initial setup, while unused capacity leads to reduced emission intensity. Conflicts typically arise when: 1) the extra capacity increases less climate-friendly production, raising emission intensity despite economic gains, or 2) extra capacity cannot be used, causing economic losses despite climate benefits. Our results also show that what can be labeled a win in climate terms, and to what extent, depends on the selected target metric(s). SIGNIFICANCE Governments and societies strive to balance food production with environmental goals. In this context, it is essential to identify farm-level economic and climatic win-win and lose-win scenarios, not only for farmers but also for policymakers and the broader society. This study could inform decision-making and policy development, potentially enhancing economic and climatic performance in combined milk and meat production.