Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Ingrid Schafroth Sandbakken Hang Su Louise Johansen Yupeng Zhang Einar Ringø Randi Røsbak Igor A. Yakovlev Kathrine Kjos Five Rolf-Erik OlsenAbstract
The feed legislation allows the use of fish protein hydrolysates in feed for the same species in which it came from, since enzymatic hydrolysis degrades the proteins and eliminates potential prions, which have caused disease in mammals, but not in fish. In this trial, we investigated the effects of partially replacing dietary fishmeal (FM) with salmon protein hydrolysate (FPH) on the intestinal gene expression and microbiota. Atlantic salmon post smolts were either fed a control diet containing 30% fishmeal (FM), a 20% FM diet with 9% salmon hydrolysate (FPH-09) or a 10% FM diet with 18% salmon hydrolysate (FPH-18), until doubling of weight. Gene expression analysis by RNA sequencing of pyloric caeca (PC), midgut (MG) and hindgut (HG) revealed a downregulation of immunological genes involved in inflammation in the intestine of FPH-18 fed salmon compared to salmon fed the FM control. The gene expression of paralogous peptide transporters (PepT) was analyzed by real time quantitative PCR in PC, anterior midgut (AMG), posterior midgut (PMG) and HG of salmon fed all the three diets. The PepT1b paralog had highest relative expression levels in PC and AMG, suggesting that PepT1b is most important for peptide uptake in the anterior intestine. PepT1a was also mainly expressed in the PC and AMG, but at lower levels than PepT1b and PepT2b in the AMG. The PepT2b paralog had high levels of expression in AMG, PMG and HG indicating that it contributed significantly to peptide uptake in the posterior part of the gastrointestinal tract. The gut microbiota in the mucosa and digesta of the MG and HG, were dominated by the phyla Cyanobacteria and Proteobacteria, but also Firmicutes were present. The only dietary effect on the microbiota was the higher prevalence of the phyla Spirochaetes in the mucosa of FPH-18 fed salmon compared to the FM fed salmon. In conclusion, replacing FM with salmon hydrolysate reduced the expression of inflammatory markers in the Atlantic salmon intestine suggesting improved health benefits. The reduced inflammation may be related to the reduced FM content, potentially bioactive peptides in the hydrolysate and/or the altered gut microbial composition.
Abstract
No abstract has been registered
Authors
Jorunn BørveAbstract
No abstract has been registered
Abstract
No abstract has been registered
Editors
Habtamu AlemAbstract
In the face of unprecedented challenges posed by the global COVID-19 pandemic, Resilience and Realities - Exploring Pandemic Effects, Governance Challenges, and Economic Insights offers a comprehensive exploration of the intricate interplay between public policies and uncertain times. This enlightening volume presents a thought-provoking collection of chapters that dissect the illusions, opportunities, and complexities surrounding public policies during crises. Spanning two captivating sections, this book embarks on a journey through the labyrinth of pandemic-related public policies, offering fresh insights into the ever-evolving landscape of economic responses and the resilient spirit of entrepreneurship. In the first section, “Illusions of Public Policies Amidst a Pandemic”, readers are invited to dissect the enigma of navigating uncertainties in crisis management. Delve into the gendered impact of the pandemic on academic women, explore the untapped opportunities within the pandemic’s wake, and scrutinize the efficacy of governmental economic strategies. The second section, “Public Policies towards Investment, Technology, and Efficiency”, provides an insightful investigation into the impact of investment in human capital on economic growth. Review the intricacies of financial management within the public sector and gain an understanding of the multifaceted dimensions of technology, investment, and efficiency in public policies. With each chapter, esteemed authors contribute their expertise to illuminate the complexities of these critical topics. Resilience and Realities - Exploring Pandemic Effects, Governance Challenges, and Economic Insights is a vital resource for policymakers, economists, academics, and curious minds seeking a deeper understanding of the intricate nexus between public policies and uncertain times. Explore the wealth of knowledge and insights within these pages and embark on a journey toward a more informed and resilient future. Discover illuminating perspectives, engage in thought-provoking analyses, and embrace the ever-changing landscape of public economics. This book stands as a beacon of knowledge and enlightenment in an era of unprecedented challenges.
Authors
Pascal Milesi Chedly Kastally Benjamin Dauphin Sandra Cervantes Francesca Bagnoli Katharina B. Budde Stephen Cavers Bruno Fady Patricia Faivre-Rampant Santiago C. González-Martínez Delphine Grivet Felix Gugerli Véronique Jorge Isabelle Lesur Kupin Dario Isidro Ojeda Alayon Sanna Olsson Lars Opgenoorth Sara Pinosio Christophe Plomion Christian Rellstab Odile Rogier Simone Scalabrin Ivan Scotti Giovanni G. Vendramin Marjana Westergren Martin Lascoux Tanja PyhäjärviAbstract
No abstract has been registered
Authors
Marco Ferretti Arthur Gessler Nathalie Cools Stefan Fleck Rossella Guerrieri Tamara Jakovljević Manuel Nicolas Tiina M. Nieminen Diana Pitar Nenad Potočić Stephan Raspe Marcus Schaub Kai Schwärzel Volkmar Timmermann Monika Vejpustková Lars Vesterdal Petteri Vanninen Peter Waldner Lothar Zimmermann Tanja GM SandersAbstract
Forests are increasingly affected by global change. Building resilient forests requires – amongst others - leveraging the wealth of knowledge from existing ground-based, field inventory and monitoring programs as well as Earth Observation systems to better assess the status, detect changes, understand processes, predict future dynamics, and guide forest management. A proposal from the European Commission for a new forest monitoring framework at the European level aims in this direction but lacks the integration of some crucial and readily available resources and infrastructures. For this reason, the proposal risks to be a missed opportunity rather than a step forward. Here we provide suggestions to help reconciling the proposal with its objectives and a more comprehensive monitoring vision.
Abstract
Phenol-formaldehyde (PF) resins can be impregnated and cured in situ to improve the woods dimensional stability and decay resistance. In search of renewable alternatives, the substitution of phenol by lignin cleavage products (LCP) has been discussed. However, the different chemical nature may affect the performance of the resin against fungal decay, formaldehyde emission, and equilibrium moisture content. In this study, 30 % (w/w) of the phenol in PF resins were substituted by LCP obtained from microwave-assisted pyrolysis. Scots pine sapwood was modified with the resin. The decay resistance against Rhodonia placenta, Gloeophyllum trabeum, and Trametes versicolor was determined. Additionally, effects of specimen organisation within the Petri dish, different substrates, length of leaching, and type of inoculum were studied. Further, the materials water vapor sorption properties and formaldehyde emission were determined. All modifications effectively reduced fungal decay. With 10 % weight percent gain (WPG), initial decay was detected, while 20 % WPG and 30 % WPG provided efficient protection. The substitution of phenol increases the formaldehyde emission. While further reduction in formaldehyde in the resin admixture or formaldehyde scavengers may be required, the method described herein can be used to partly replace fossil-based phenol, while maintaining good fungal resistance.
Abstract
Hurdal (NO-Hur) is a recently labelled ICOS class 2 station in Southeast Norway. It represents a typical southern boreal forest of medium productivity, dominated by old Norway spruce (average tree height: 25 m, ages: up to 100 years) with some pine and broadleaved trees. The eddy covariance technique is used to measure CO2 fluxes on a 42 m tower since 2021 . The measurements have an average footprint area of approximately 63 ha. In 2023, the region experienced an unusual dry spring and then an extraordinary flood in August. Both events showed significant impact on the Net Ecosystem Exchange (NEE) and heat fluxes. The station is also equipped with automatic dendrometers and sap flow devices on the dominant spruce trees, allowing us to investigate the impact of these events at the individual tree scale. We will present tree growth and transpiration flux at different temporal scales (from sub-daily to seasonal), and relate these single tree observations with environmental variables, ecosystem-level NEE and evapotranspiration using phase synchronization analysis. These observational data will yield insights into carbon and water processes of a boreal forest at different scales in response to multiple disturbances.
Abstract
No abstract has been registered