Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Aline Fugeray-Scarbel Laurent Bouffier Stéphane Lemarié Leopoldo Sánchez Ricardo Alia Chiara Biselli Joukje Buiteveld Andrea Carra Luigi Cattivelli Arnaud Dowkiw Luis Fontes Agostino Fricano Jean-Marc Gion Jacqueline Grima-Pettenati Andreas Helmersson Francisco Lario Luis Leal Sven Mutke Giuseppe Nervo Torgny Persson Laura Rosso Marinus Jm Smulders Arne Steffenrem Lorenzo Vietto Matti HaapanenAbstract
No abstract has been registered
Authors
Frode VeggelandAbstract
No abstract has been registered
Abstract
Presentation of preliminary findings from a feed trial conducted winter 2024, where the effect of feeding lactating dairy cows a 100% ensiled grass pulp diet was measured on production parameters, GHG-emissions, behaviour and metabolic markers, compared to regular whole plant silage from the same ley and harvest dates
Authors
Alice Budai Daniel Rasse Thomas Cottis Erik J. Joner Vegard Martinsen Adam O'Toole Hugh Riley Synnøve Rivedal Ievina Sturite Gunnhild Søgaard Simon Weldon Samson ØpstadAbstract
Carbon content is a key property of soils with importance for all ecosystem functions. Measures to increase soil carbon storage are suggested with the aim to compensate for agricultural emissions. In Norway, where soils have relatively high carbon content because of the cold climate, adapting management practices that prevent the loss of carbon to the atmosphere in response to climate change is also important. This work presents an overview of the potential for carbon sequestration in Norway from a wide range of agricultural management practices and provides recommendations based on certainty in the reported potential, availability of the technology, and likelihood for implementation by farmers. In light of the high priority assigned to increased food production and degree of self-sufficiency in Norway, the following measures were considered: (1) utilization of organic resources, (2) use of biochar, (3) crop diversification and the use of cover crops, (4) use of plants with larger and deeper root systems, (5) improved management of meadows, (6) adaptive grazing of productive grasslands (7) managing grazing in extensive grasslands, (8) altered tillage practices, and (9) inversion of cultivated peat with mineral soil. From the options assessed, the use of cover crops scored well on all criteria evaluated, with a higher sequestration potential than previously estimated (0.2 Mt CO2-equivalents annually). Biochar has the largest potential in Norway (0.9 Mt CO2-equivalents annually, corresponding to 20% of Norwegian agricultural emissions and 2% of total national emissions), but its readiness level is not yet achieved despite interest from industry to apply this technology at large scale. Extensive grazing and the use of deep-rooted plants also have the potential for increasing carbon storage, but there is uncertainty regarding their implementation and the quantification of effects from adapting these measures. Based on the complexities of implementation and the expected impacts within a Norwegian context, promising options with substantial payoff are few. This work sheds light on the knowledge gaps remaining before the presented measures can be implemented.
Authors
Eva BrodAbstract
No abstract has been registered
Authors
Zumry Niyas Charuni I. Madhushani Miyuru Gunathilake Vindhya Basnayaka Komali Kantamaneni Upaka RathnayakeAbstract
No abstract has been registered
Authors
Tilde Hjermann Nikolai Antonsen Bilet Inger Maren Rivrud Erling Meisingset Pål Thorvaldsen Atle MysterudAbstract
Grazing by wildlife on agricultural land is widespread across geographical regions, and can cause human–wildlife conflicts due to reduced crop yield when the grazing pressure is high. Growing red deer (Cervus elaphus) populations in Europe call for an increased understanding of their grazing patterns to mitigate damages. We quantified how red deer grazing pressure (grazing presence and grazing level) on agricultural grass meadows (n = 60) in Norway varied across multiple spatial scales. We used a nested, hierarchical study design transcending from a broad scale (meadows across the landscape) to intermediate (between nearby meadows) and local (within-meadow) scales, allowing us to identify at which scale the variation in grazing pressure was strongest. We estimated how grazing was determined by broad-scale factors influencing forage availability and quality through population density, distance to coastline, and differences between the first versus second harvest, by intermediate-scale factors in terms of meadow management causing differences in botanical composition and quality, and by local-scale factors in terms of perceived predation risk and disturbance. At a broad scale, higher population densities were associated with higher grazing pressure, and more grazing occurred before the first compared to the second harvest. Intermediate-scale factors explained the most variation of grazing pressure from red deer, with higher grazing pressure on newly renewed meadows compared to other nearby meadows. On a local scale, more grazing occurred closer to the forest edge, providing cover, and further away from infrastructure, with increased risk and disturbance. Overall, our study highlights how drivers of grazing pressure on agricultural land vary across spatial scales. Population reductions on a broader scale may have some effect in reducing the grazing pressure, but renewed meadows will nevertheless attract red deer, causing higher grazing pressure compared to neighbouring meadows. This insight is crucial for determining effective mitigation strategies facing rising red deer populations across Europe.
Abstract
Background and Aims Epichloë endophytes are vertically transmitted via grass seeds and chemically defend their hosts against herbivory. Endophyte-conferred plant defence via alkaloid biosynthesis may occur independently of costs for host plant growth. However, fitness consequences of endophyte-conferred defence and transgenerational effects on herbivore resistance of progeny plants, are rarely studied. The aim of this study was to test whether severe defoliation in mother plants affects their seed production, seed germination rate, and the endophyte-conferred resistance of progeny plants. Methods In a field study, we tested the effects of defoliation and endophyte symbiosis (Epichloë uncinata) on host plant (Festuca pratensis) performance, loline alkaloid concentrations in leaves and seeds, seed biomass and seed germination rates. In a subsequent greenhouse study, we challenged the progeny of the plants from the field study to aphid herbivory and tested whether defoliation of mother plants affects endophyte-conferred resistance against aphids in progeny plants. Key Results Defoliation of the mother plants resulted in a reduction of alkaloid concentrations in leaves and elevated the alkaloid concentrations in seeds when compared with non-defoliated endophyte-symbiotic plants. Viability and germination rate of seeds of defoliated endophyte-symbiotic plants were significantly lower compared to those of non-defoliated endophyte-symbiotic plants and endophyte-free (defoliated and non-defoliated) plants. During six weeks growth, seedlings of defoliated endophyte-symbiotic mother plants had elevated alkaloid concentrations, which negatively correlated with aphid performance. Conclusions Endophyte-conferred investment in higher alkaloid levels in seeds -elicited by defoliation- provided herbivore protection in progenies during the first weeks of plant establishment. Better protection of seeds via high alkaloid concentrations negatively correlated with seed germination indicating trade-off between protection and viability.
Authors
Erlend Hustad Honningdalsnes Erik Stensrud Marstein Dag Lindholm Helge Bonesmo Heine Nygard RiiseAbstract
No abstract has been registered
Abstract
Forest restoration and improved forest management are seen as options to enhance terrestrial carbon dioxide removal in many regions, yet concerns surrounding their potentially adverse surface albedo impacts exist, particularly in high latitude and altitude regions. Such concerns are often based on generalized conclusions rooted in analyses carried out over broad spatial extents at coarse resolutions. The impacts of surface albedo change are highly sensitive to local environmental factors governing both the surface albedo and solar radiation budgets, and many previous assessments either do not sufficiently deal with such sensitivities or do not qualify the conditions under which they are relevant. Using the country of Norway with its diverse gradients in topography and climate as an ideal case study region, we seek clarity to the question of whether surface albedo is relevant to consider in forestry planning, and if so, what are the important factors determining it. We find that the adverse impact of a forest's albedo outweighs its carbon cycle benefit on only ∼4% of Norway's total forested area, reducing to <∼1% when future climate changes are considered. Our findings challenge the common perception that surface albedo concerns are highly relevant to forestry planning at high latitudes and emphasize the importance of carrying out albedo impact assessments at spatial scales aligning with those of local forestry planning.