Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2025

Abstract

The most common and harmful disease affecting the grass on golf courses in the Nordic countries is microdochium patch. The early diagnosis of the Microdochium nivale can help prevent the spread of infection through targeted treatment. The aim of the work was to develop an enzyme linked immunosorbent assay (ELISA) test system for Microdochium fungi detection. We have prepared specific rabbit affinity antibodies against Microdochium genus by antigen adsorption and exhaustion on wide range of fungal species. These specific antibodies were used to construct sandwich ELISA showing genus specificity and capable to detect the antigen on early stage of infection on different grass substrates. In field study, the ELISA has shown good correlation to microbiological diagnostics and was able to detect the latent infection in the absence of visual signs. We suggest that Microdochium ELISA can be used for regular testing of grass specimens for prediction and early diagnosis of latent infection. Further studies are required to determine the antigen level, which indicates the degree of infection at which steps to prevent the disease need to be applied.

Abstract

European fruit research institute network (EUFRIN) has started coordinated apple rootstock trials across the Europe in 2017. Until now, nineteen research institutions from 14 countries established 6 apple rootstock trials where 33 apple rootstocks of different vigour are in tests. Introduction of new apple orchard designs, multileader canopies usually require more vigorous rootstocks. Investigations of semi-dwarfing apple rootstocks ‘PFR1’ and ‘PFR3’ (New Zealand), ‘G.935’ and ‘G.202’ (US), ‘EM_01’ (UK) and ‘G.11’ as control were performed with apple ‘Galaval’ in Spain, France, and Lithuania during 2017-2023. On the average of five trial sites, the most vigorous trees were on ‘EM_01’, ‘PFR1’ and ‘PFR3’, exceeding vigour of trees on ‘G.11’ by 61 – 84%. Apple trees on rootstocks ‘PFR1’, ‘PFR3’ and ‘G.935’ produced higher cumulative yields, ‘G.202’ similar and ‘EM_01’ significantly lower yield comparing with ‘G.11’. Fertility index of ‘G.935’ equalled fertility of dwarfing ‘G.11’. Fertility index of ‘PFR3’ was similar to ‘G.202’, and the lowest was recorded for ‘EM_01’. Average fruit size did not depend on rootstocks. Rootstock – site interaction was not significant for tree vigour, fruit size, however significant interactions were recorded for cumulative yield and fertility index.

Abstract

European fruit research institute network (EUFRIN) has started coordinated apple and pear rootstock trials across the Europe in 2017. First pear rootstock trial was established in 2019 where quince rootstocks from NIAB (UK) breeding program ‘QR196-9’ and ‘QR530-11’ were compared with rootstocks ‘Adams’ and ‘Sydo’. Investigations were conducted with pear cultivar ‘Conference’ in Spain, Romania, Poland and Norway during 2019-2023. In all sites the most vigorous pear trees grew on ‘QR196-9’ rootstock. On the average of four trial sites, the weakest growth was recorded on ‘QR530-11’, except the Spanish site. Pear trees on rootstock ‘Adams’ produced the highest cumulative yields. Cumulative yields on other rootstocks were significantly lower by 16-23% without significant differences between them. However, site geographical position, climate and soil properties had a significant effect on rootstock performance. Similar to trees on ‘Adams’ high pear yield in Spain was harvested from trees on ‘QR196-9’; on ‘QR530-11’ rootstock in Poland, but ‘Sydo’ and ‘QR530-11’ rootstocks gave the highest yield in Romania. On the average of all sites, the least cumulative fertility index was recorded on ‘QR196-9’. Significant rootstock site interactions were revealed: rootstock ‘Adams’ had the highest cumulative fertility index in Spain and Norway, while rootstock ‘QR530-11’ in Poland and Romania.

To document

Abstract

No abstract has been registered

Abstract

Intensification of forest management is seen as one important measure to increase carbon sequestration and contribute to balance CO2 emissions and mitigate climate change. Potential measures for forest management intensification include increasing the percentage of the area that is actively reforested after felling, planting at higher densities and with genetically improved material, nitrogen fertilization, and pre-commercial thinning. Here we assessed the mitigation potential of these practices in Norwegian forests from 2018 until the end of the 21st century. As a result, when these management practices were intensified, separately and simultaneously, carbon sequestration over the 80-year simulation period was larger than under current practices. Pre-commercial thinning gave the largest additional 80-year carbon dioxide removal increment and fertilization the smallest. The largest accumulated carbon dioxide removal potential occurred when intensifying all the proposed measures in one scenario and was estimated to be around 329.9 Tg CO2 by the end of the century, corresponding to offset more than six times Norway's total GHG emissions in 2022. If the intensification of these practices is considered separately, our results suggested that pre-commercial thinning and active reforestation after felling, in that order, should be prioritized as climate change mitigation measures, followed by genetic improvement, planting density and fertilization.

To document

Abstract

Chocolate spot (CS), caused by Botrytis fabae, is one of the most destructive fungaldiseases affecting faba bean (Vicia faba L.) globally. This study evaluated 33 fababean cultivars across two locations and over 2 years to assess genetic resistance andthe effect of fungicide application on CS progression. The utility of unmanned aerialvehicle–mounted multispectral camera for disease monitoring was examined. Signif-icant variability was observed in cultivar susceptibility, with Bolivia exhibiting thehighest level of resistance and Louhi, Sampo, Vire, Merlin, Mistral, and GL Sunriseproving highly susceptible. Fungicide application significantly reduced CS severityand improved yield. Analysis of canopy spectral signatures revealed the near-infraredand red edge bands, along with enhanced vegetation index (EVI) and soil adjustedvegetation index, as most sensitive to CS infection, and they had a strong negativecorrelation with CS severity ranging from −0.51 to −0.71. In addition, EVI enabledearly disease detection in the field. Support vector machine accurately classified CSseverity into four classes (resistant, moderately resistant, moderately susceptible, andsusceptible) based on spectral data with higher accuracy after the onset of diseasecompared to later in the season (accuracy 0.75–0.90). This research underscores thevalue of integrating resistant germplasm, sound agronomic practices, and spectralmonitoring for effectively identification and managing CS disease in faba bean