Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Knut ØistadAbstract
No abstract has been registered
Authors
Darius KviklysAbstract
No abstract has been registered
Authors
Xia Wang Dawei Chen Mengnan Guo Yao Ning Mingze Geng Jing Guo Jiahui Gao Dong Zhao Yupeng Zhang Qianpeng Li Lixiang Li Shiyang Li Yanqing Li Xiaoran Xie Xiuli Zuo Jingxin LiAbstract
Colon cancer is increasing worldwide and is commonly regarded as hormone independent, yet recent reports have implicated sex hormones in its development. Nevertheless, the role of hormones from the hypothalamus–hypophysis axis in colitis-associated colorectal cancer (CAC) remains uncertain. In this study, we observed a significant reduction in the expression of the oxytocin receptor (OXTR) in colon samples from both patient with colitis and patient with CAC. To investigate further, we generated mice with an intestinal-epithelium-cell-specific knockout of OXTR. These mice exhibited markedly increased susceptibility to dextran-sulfate-sodium-induced colitis and dextran sulfate sodium/azoxymethane-induced CAC compared to wild-type mice. Our findings indicate that OXTR depletion impaired the inner mucus of the colon epithelium. Mechanistically, oxytocin was found to regulate Mucin 2 maturation through β1-3-N-acetylglucosaminyltransferase 7 (B3GNT7)-mediated fucosylation. Interestingly, we observed a positive correlation between B3GNT7 expression and OXTR expression in human colitis and CAC colon samples. Moreover, the simultaneous activations of OXTR and fucosylation by l-fucose significantly alleviated tumor burden. Hence, our study unveils oxytocin’s promising potential as an affordable and effective therapeutic intervention for individuals affected by colitis and CAC.
Abstract
No abstract has been registered
Abstract
The aim of this study was to compare various types of peat-free or peat-reduced growing media on growth and flowering of ‘Purple piruette’ petunia hybrids. In experiment 1, 30 variants of growing media, including commercial peat-based growing media, different peat-reduced and peat-free mixtures based on garden/park waste compost and wood fiber were tested. All the peat-free variants failed in producing normal, healthy plants without chlorosis. A commercial peat-reduced growing medium with peat, garden/park waste-compost and crushed rock material (0-2 mm), base fertilized with chicken manure, and similar growing media mixtures with other types of base fertilizer gave larger plants with more flowers than the peat-based reference. The highest performing mixture with the smallest amount of peat (35% wood fiber, 30% garden park/park waste-compost, 30% peat and 5% sand) gave equal results as the commercial peat-reduced growing medium. In experiment 2, further studies of the effect of peat reduction by incorporation of wood fiber and four compost types were performed. The effect of start fertilizer incorporation to the substrates was also assessed. One of the peat-free variants with compost and wood fiber gave normal plants with rich flowering but didn’t reach the performance of pure peat on plant size. The pH (H2O) of the composts seems to be a key factor for successful substrate mixtures of compost and wood fiber. The composts with highest pH gave small plants and start fertilizer had no effects on the growth. The results show that there is a potential for development of peat-free substrates based on compost and wood fiber presuming that pH (H2O) of the composts is not too high.
Authors
Cornelya Klutsch Junbin Zhao Mikhail Mastepanov Hanna Marika Silvennoinen Juho Vuolteenaho Erling Fjelldal David Kniha Runar Kjær Snorre HagenAbstract
No abstract has been registered
Abstract
Interest in dairy cow-calf contact (CCC) systems is growing, yet limited research had been focused on CCC in a pasture setting. Our study aimed to evaluate the performance of pastured dairy cows and calves with or without CCC through machine milk yield and composition, cow body condition score (BCS) and body weight (BW) decrease, and calf body weight gain (BWG). We also examined calf intake of concentrates, artificially reared calves’ milk intake, and the health of both cows and calves. Conducted on a commercial dairy freestall farm and summer farm in Norway from May to August 2021, the study included twenty cow-calf pairs: 17 Norwegian Red (NRF) and three NRF × Holstein crossbreeds. They were divided into two treatments: cow-calf contact (CC, n = 10) or early separation (ES, n = 10), each with two groups of five cow-calf pairs. CC pairs had full CCC on pasture until 6 weeks postpartum and part-time contact in weeks 7 and 8 (weaning). ES pairs were separated 1–3 h after birth, kept on separate pastures with no contact between ES cows and calves. ES calves’ received daily milk allowances of 12–14 L (weeks 0–6), reduced to 8 L (week 7) and further to 4 L (week 8). From week 9, all calves were denied access to any milk (ES) or cows (CC). During weeks 0–6, CC cows had a daily machine milk yield 23.7 kg lower/cow than ES cows. The difference was likely affected by nursing and other factors (parity and inhibited milk ejection), and persisted during weaning, with CC cows delivering 8.3 kg less/cow/day in weeks 10 and 11 postpartum. Fat and protein content in machine milk showed no significant difference, while lactose content was lower in milk from CC cows than ES cows (week 5 postpartum). CC cows had a lower BW decrease compared to ES cows (CC: 913 g/day, ES: 1415 g/day from pasture day one through week 9). ES calves had an average milk intake of 10.7 L/calf/day (weeks 0–6), and consumed more concentrates than CC calves. Calves’ daily BWG did not differ between treatments in weeks 0–6 (CC: 1340 and ES: 1250 g/day) and decreased for both treatments during weaning (CC: 1050 g/day, ES: 920 g/day in weeks 6–9). Inhibited milk ejection during machine milking was a challenge in CC cows, prompting oxytocin injections to prevent mastitis. Allowing calves full CCC or providing whole milk near ad libitum can result in similar BWG and health in calves. Further research should explore strategies to enhance milk ejection in pastured CCC cows.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Eutrophication of coastal ecosystems often stimulates massive and uncontrolled growth of green macroalgae, causing serious ecological problems. These green tides are frequently exposed to light intensities that can reduce their growth via the production of reactive oxygen species (ROS). To understand the physiological and biochemical mechanisms leading to the formation and maintenance of green tides, the interaction between inorganic nitrogen (Ni) and light was studied. In a bi-factorial physiological experiment simulating eutrophication under different light levels, the bloom-forming green macroalga Ulva rigida was exposed to a combination of ecologically relevant nitrate concentrations (3.8–44.7 µM) and light intensities (50–1100 µmol photons m−2 s−1) over three days. Although artificial eutrophication (≥ 21.7 µM) stimulated nitrate reductase activity, which regulated both nitrate uptake and vacuolar storage by a feedback mechanism, nitrogen assimilation remained constant. Growth was solely controlled by the light intensity because U. rigida was Ni-replete under oligotrophic conditions (3.8 µM), which requires an effective photoprotective mechanism. Fast declining Fv/Fm and non-photochemical quenching (NPQ) under excess light indicate that the combined photoinhibitory and PSII-reaction centre quenching avoided ROS production effectively. Thus, these mechanisms seem to be key to maintaining high photosynthetic activities and growth rates without producing ROS. Nevertheless, these photoprotective mechanisms allowed U. rigida to thrive under the contrasting experimental conditions with high daily growth rates (12–20%). This study helps understand the physiological mechanisms facilitating the formation and persistence of ecologically problematic green tides in coastal areas.