Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Sammendrag
The aim of the project is to evaluate and assess measures in lawn care management and at the same time to combine new techniques and alternative products to control diseases such as snow mold (Microdochium nivale) and dollar spots (Sclerotinia homoeocarpa) without or with a greatly reduced use of pesticides. Therefore, the lawn research group of the NIBIO (Norwegian Institute for Bioeconomy Research) started a project on Integrated Pest Management (IPM) with a focus on the most important fungal diseases and insect pests on golf turf. The project is supported by STERF (Scandinavian Turf and Environmental Research Foundation) and the R&A (The Royal and Ancient Golf Club of St. Andrews) as main sponsors, as well as by the German Golf Association, the Netherlands Golf Federation sponsor, the Botaniska Analysgruppen Sweden and the Danish Environmental Protection Agency. The current project aims is to develop new findings with regard to the increasing challenges in dealing with the above-mentioned pests. The two questions to check are: (1) the effectiveness of the “rolling” of greens (dollar spot treatment) and the effectivity of UV-C exposure (snow mold prevention). For this reason, two different attempts were made on a putting green at the golf course Osnabrueck (Bissendorf-Jeggen).
Forfattere
Iris Hordijk Daniel S. Maynard Simon P. Hart Mo Lidong Hans ter Steege Jingjing Liang Sergio de-Miguel Gert-Jan Nabuurs Peter B. Reich Meinrad Abegg C. Yves Adou Yao Giorgio Alberti Angelica M. Almeyda Zambrano Braulio V. Alvarado Alvarez-Davila Esteban Patricia Alvarez-Loayza Luciana F. Alves Christian Ammer Clara Antón Fernandéz Alejandro Araujo-Murakami Luzmila Arroyo Valerio Avitabile Gerardo A. Aymard C Timothy Baker Radomir Bałazy Olaf Banki Jorcely Barroso Meredith L. Bastian Jean-Francois Bastin Luca Birigazzi Philippe Birnbaum Robert Bitariho Pascal Boeckx Frans Bongers Olivier Bouriaud Pedro H. S. Brancalion Susanne Brandl Roel Brienen Eben N. Broadbent Helge Bruelheide Filippo Bussotti Roberto Cazzolla Gatti Ricardo G. César Goran Cesljar Robin Chazdon Han Y. H. Chen Chelsea Chisholm Emil Cienciala Connie J. Clark David B. Clark Gabriel Colletta David Coomes Fernando Cornejo Valverde Jose J. Corral-Rivas Philip Crim Jonathan Cumming Selvadurai Dayanandan André L. de Gasper Mathieu Decuyper Géraldine Derroire Ben DeVries Ilija Djordjevic Amaral Iêda Aurélie Dourdain Engone Obiang Nestor Laurier Brian Enquist Teresa Eyre Adandé Belarmain Fandohan Tom M. Fayle Leandro V. Ferreira Ted R. Feldpausch Leena Finér Markus Fischer Christine Fletcher Lorenzo Frizzera Javier G. P. Gamarra Damiano Gianelle Henry B. Glick David Harris Andrew Hector Andreas Hemp Geerten Hengeveld Bruno Hérault John Herbohn Annika Hillers Eurídice N. Honorio Coronado Cang Hui Hyunkook Cho Thomas Ibanez Il Bin Jung Nobuo Imai Andrzej M. Jagodzinski Bogdan Jaroszewicz Vivian Johanssen Carlos A. Joly Tommaso Jucker Viktor Karminov Kuswata Kartawinata Elizabeth Kearsley David Kenfack Deborah Kennard Sebastian Kepfer-Rojas Gunnar Keppel Mohammed Latif Khan Timothy Killeen Hyun Seok Kim Kanehiro Kitayama Michael Köhl Henn Korjus Florian Kraxner Diana Laarmann Mait Lang Simon Lewis Huicui Lu Natalia Lukina Brian Maitner Yadvinder Malhi Eric Marcon Beatriz Schwantes Marimon Ben Hur Marimon-Junior Andrew Robert Marshall Emanuel Martin Olga Martynenko Jorge A. Meave Omar Melo-Cruz Casimiro Mendoza Cory Merow Stanislaw Miscicki Abel Monteagudo Mendoza Vanessa Moreno Sharif A. Mukul Philip Mundhenk Maria G. Nava-Miranda David Neill Victor Neldner Radovan Nevenic Michael Ngugi Pascal A. Niklaus Jacek Oleksyn Petr Ontikov Edgar Ortiz-Malavasi Yude Pan Alain Paquette Alexander Parada-Gutierrez Elena Parfenova Minjee Park Marc Parren Narayanaswamy Parthasarathy Pablo L. Peri Sebastian Pfautsch Oliver L. Phillips Nicolas Picard Maria Teresa Piedade Daniel Piotto Nigel C. A. Pitman Irina Polo Lourens Poorter Axel Dalberg Poulsen John R. Poulsen Hans Pretzsch Freddy Ramirez Arevalo Zorayda Restrepo-Correa Mirco Rodeghiero Samir Rolim Anand Roopsind Francesco Rovero Ervan Rutishauser Purabi Saikia Christian Salas-Eljatib Peter Schall Dmitry Schepaschenko Michael Scherer-Lorenzen Bernhard Schmid Jochen Schöngart Eric B. Searle Vladimír Šebeň Josep M. Serra-Diaz Douglas Sheil Anatoly Shvidenko Javier Silva-Espejo Marcos Silveira James Singh Plinio Sist Ferry Slik Bonaventure Sonké Alexandre F. Souza Krzysztof Stereńczak Jens-Christian Svenning Miroslav Svoboda Ben Swanepoel Natalia Targhetta Nadja Tchebakova Raquel Thomas Elena Tikhonova Peter Umunay Vladimir Usoltsev Renato Valencia Fernando Valladares Fons van der Plas Do Van Tran Michael E. Van Nuland Rodolfo Vasquez Martinez Hans Verbeeck Helder Viana Alexander C. Vibrans Simone Vieira Klaus von Gadow Hua-Feng Wang James Watson Gijsbert D. A. Werner Susan K. Wiser Florian Wittmann Verginia Wortel Roderick Zagt Tomasz Zawila-Niedzwiecki Chunyu Zhang Xiuhai Zhao Mo Zhou Zhi-Xin Zhu Irie Casimir Zo-Bi Thomas W. CrowtherSammendrag
1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions.
Forfattere
Till SeehusenSammendrag
No abstract has been registered
Forfattere
Mathias Amundsen Anne Linn Hykkerud Niina Kelanne Sanni Tuominen Gesine Schmidt Oskar Laaksonen Baoru Yang Inger Martinussen Laura Jaakola Kjersti AabySammendrag
No abstract has been registered
Sammendrag
The anaerobic digestion of organic materials produces biogas; however, optimizing methane (CH4) content within biogas plants by capturing carbon dioxide (CO2) is one of the challenges for sustainable biomethane production. CH4 is separated from biogas, which is called biogas upgrading for biomethane production. In this regard, in-situ CO2 capture and utilization could be an alternative approach that can be achieved using conductive particles, where the conductive particles support the direct intraspecific electron transfer (DIET) to promote CH4 production. In this investigation, a carbon nanotube (CNT) was grown over conductive activated carbon (AC). Then an iron (Fe) nanoparticle was anchored (AC/CNT/Fe), which ultimately supported microbes to build the biofilm matrix, thereby enhancing the DIET for CH4 formation. The biogas production and CH4 content increased by 17.57 % and 15.91 %, respectively, when AC/CNT/Fe was utilized. Additionally, 18S rRNA gene sequencing reveals that Methanosarcinaceae and Methanobacteriaceae families were the most dominant microbes in the reactor when conductive particles (AC/CNT/Fe) were applied. The proposed study supports the stable operation of biogas plants to utilize CO2 for CH4 production by using surface-modified material.
Sammendrag
No abstract has been registered
Forfattere
Chatchai Kosawang Isabella Børja Maria-Luz Herrero Nina Elisabeth Nagy Lene R. Nielsen Halvor Solheim Volkmar Timmermann Ari HietalaSammendrag
No abstract has been registered
Forfattere
Tomáš Kolář Michal Rybníček Paul Eric Aspholm Petr Čermák Ólafur Eggertsson Vladimír Gryc Tomáš Žid Ulf BüntgenSammendrag
The Arctic is one of the regions most sensitive to global warming, for which climate and environmental proxy archives are largely insufficient. Arctic driftwood provides a unique resource for research into the circumpolar entanglements of terrestrial, coastal and marine factors and processes – past, present, future. Here, first dendrochronological and wood anatomical insights into 639 Arctic driftwood samples are presented. Samples were collected across northern Norway (n =430) and north-western Iceland (n =209) in 2022. The overall potentials and limitations of Arctic driftwood to improve tree-ring chronologies from the boreal forest, and to reconstruct changes in sea ice extent and ocean current dynamics are discussed. Finally, the role driftwood has possibly played for Arctic settlements in the past hundreds of years is examined.
Sammendrag
No abstract has been registered
Forfattere
Fuad Gasi Naris Pojskić Belma Kalamujić Stroil Oddmund Frøynes Milica Fotirić Akšić Mekjell MelandSammendrag
No abstract has been registered