Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Sammendrag

The aim of the project is to evaluate and assess measures in lawn care management and at the same time to combine new techniques and alternative products to control diseases such as snow mold (Microdochium nivale) and dollar spots (Sclerotinia homoeocarpa) without or with a greatly reduced use of pesticides. Therefore, the lawn research group of the NIBIO (Norwegian Institute for Bioeconomy Research) started a project on Integrated Pest Management (IPM) with a focus on the most important fungal diseases and insect pests on golf turf. The project is supported by STERF (Scandinavian Turf and Environmental Research Foundation) and the R&A (The Royal and Ancient Golf Club of St. Andrews) as main sponsors, as well as by the German Golf Association, the Netherlands Golf Federation sponsor, the Botaniska Analysgruppen Sweden and the Danish Environmental Protection Agency. The current project aims is to develop new findings with regard to the increasing challenges in dealing with the above-mentioned pests. The two questions to check are: (1) the effectiveness of the “rolling” of greens (dollar spot treatment) and the effectivity of UV-C exposure (snow mold prevention). For this reason, two different attempts were made on a putting green at the golf course Osnabrueck (Bissendorf-Jeggen).

Til dokument

Sammendrag

1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions.

Til dokument

Sammendrag

The anaerobic digestion of organic materials produces biogas; however, optimizing methane (CH4) content within biogas plants by capturing carbon dioxide (CO2) is one of the challenges for sustainable biomethane production. CH4 is separated from biogas, which is called biogas upgrading for biomethane production. In this regard, in-situ CO2 capture and utilization could be an alternative approach that can be achieved using conductive particles, where the conductive particles support the direct intraspecific electron transfer (DIET) to promote CH4 production. In this investigation, a carbon nanotube (CNT) was grown over conductive activated carbon (AC). Then an iron (Fe) nanoparticle was anchored (AC/CNT/Fe), which ultimately supported microbes to build the biofilm matrix, thereby enhancing the DIET for CH4 formation. The biogas production and CH4 content increased by 17.57 % and 15.91 %, respectively, when AC/CNT/Fe was utilized. Additionally, 18S rRNA gene sequencing reveals that Methanosarcinaceae and Methanobacteriaceae families were the most dominant microbes in the reactor when conductive particles (AC/CNT/Fe) were applied. The proposed study supports the stable operation of biogas plants to utilize CO2 for CH4 production by using surface-modified material.

Til dokument

Sammendrag

The Arctic is one of the regions most sensitive to global warming, for which climate and environmental proxy archives are largely insufficient. Arctic driftwood provides a unique resource for research into the circumpolar entanglements of terrestrial, coastal and marine factors and processes – past, present, future. Here, first dendrochronological and wood anatomical insights into 639 Arctic driftwood samples are presented. Samples were collected across northern Norway (n =430) and north-western Iceland (n =209) in 2022. The overall potentials and limitations of Arctic driftwood to improve tree-ring chronologies from the boreal forest, and to reconstruct changes in sea ice extent and ocean current dynamics are discussed. Finally, the role driftwood has possibly played for Arctic settlements in the past hundreds of years is examined.