Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Authors
Juliana D. Klein Simo Maduna Matthew L. Dicken Charlene Da Silva Michelle Soekoe Meaghen E. McCord Warren M. Potts Snorre Hagen Aletta E Bester-van der MerweAbstract
Adaptive divergence in response to environmental clines are expected to be common in species occupying heterogeneous environments. Despite numerous advances in techniques appropriate for non-model species, gene–environment association studies in elasmobranchs are still scarce. The bronze whaler or copper shark (Carcharhinus brachyurus) is a large coastal shark with a wide distribution and one of the most exploited elasmobranchs in southern Africa. Here, we assessed the distribution of neutral and adaptive genomic diversity in C. brachyurus across a highly heterogeneous environment in southern Africa based on genome-wide SNPs obtained through a restriction site-associated DNA method (3RAD). A combination of differentiation-based genome-scan (outflank) and genotype–environment analyses (redundancy analysis, latent factor mixed models) identified a total of 234 differentiation-based outlier and candidate SNPs associated with bioclimatic variables. Analysis of 26,299 putatively neutral SNPs revealed moderate and evenly distributed levels of genomic diversity across sites from the east coast of South Africa to Angola. Multivariate and clustering analyses demonstrated a high degree of gene flow with no significant population structuring among or within ocean basins. In contrast, the putatively adaptive SNPs demonstrated the presence of two clusters and deep divergence between Angola and all other individuals from Namibia and South Africa. These results provide evidence for adaptive divergence in response to a heterogeneous seascape in a large, mobile shark despite high levels of gene flow. These results are expected to inform management strategies and policy at the national and regional level for conservation of C. brachyurus populations.
Abstract
No abstract has been registered
Authors
Anne MuolaAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Shelemia Nyamuryekung'e Andrew Cox Andres Perea Richard Estell Andres F. Cibils John P. Holland Tony Waterhouse Glenn Duff Micah Funk Matthew M. McIntosh Sheri Spiegal Brandon Bestelmeyer Santiago UtsumiAbstract
Virtual fencing systems have emerged as a promising technology for managing the distribution of livestock in extensive grazing environments. This study provides comprehensive documentation of the learning process involving two conditional behavioral mechanisms and the documentation of efficient, effective, and safe animal training for virtual fence applications on nursing Brangus cows. Two hypotheses were examined: (1) animals would learn to avoid restricted zones by increasing their use of containment zones within a virtual fence polygon, and (2) animals would progressively receive fewer audio-electric cues over time and increasingly rely on auditory cues for behavioral modification. Data from GPS coordinates, behavioral metrics derived from the collar data, and cueing events were analyzed to evaluate these hypotheses. The results supported hypothesis 1, revealing that virtual fence activation significantly increased the time spent in containment zones and reduced time in restricted zones compared to when the virtual fence was deactivated. Concurrently, behavioral metrics mirrored these findings, with cows adjusting their daily travel distances, exploration area, and cumulative activity counts in response to the allocation of areas with different virtual fence configurations. Hypothesis 2 was also supported by the results, with a decrease in cueing events over time and increased reliance with animals on audio cueing to avert receiving the mild electric pulse. These outcomes underscore the rapid learning capabilities of groups of nursing cows in responding to virtual fence boundaries.
Authors
Tove Vaaje-KolstadAbstract
No abstract has been registered
Authors
Vilde Lytskjold Haukenes Johan Asplund Lisa Åsgård Jørund Rolstad Ken Olaf Storaunet Mikael OhlsonAbstract
Fire in the boreal forests emits substantial amounts of organically bound carbon (C) to the atmosphere and converts a fraction of the burnt organic matter into charcoal, which in turn is highly refractory and functions as a long-term stable C pool. It is well established that the boreal forest charcoal pool is sufficiently large to play a significant role in the global C cycle. However, there is a need for spatially representative estimates of how large proportions of the forest floor C pool are made up of charcoal across different plant communities in the boreal forest ecosystem. Thus, we have quantified the amounts of C separately in charcoal and the organic layers of the forest floor across fine spatial scales in a boreal forest landscape with a well-documented fire history. We found that the proportion of charcoal C made up an average of 1.2% of the total forest floor C, and the charcoal proportions showed a high small-scale spatial variability and were concentrated in the organic–mineral soil interface. Proportions of charcoal C decreased with increasing time since last fire. Deeper soils, denser soils, and local concave areas had the highest proportions of charcoal C, whereas historical fire frequencies and current differences in vegetation did not relate to the proportions of charcoal C.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered