Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Land use and management affect soil hydrological processes, and the impacts can be further enhanced and accelerated due to climate change. In this study, we analyzed the possible long-term effects of different land use types on soil hydrological processes based on future climatic scenarios. Soil moisture and temperature probes were installed at four land use sites, a cropland, a vineyard, a meadow, and a forest area. Based on modeling of long-term changes in soil water content (SWC) using the HYDRUS 1D model, we found that changes in precipitation have a more pronounced effect on soil water content than changes in air temperature. Cropland is at the highest risk of inland water and SWC values above field capacity (FC). The number of days when the average SWC values are above FC is expected to increase up to 109.5 days/year from the current 52.4 days/year by 2081–2090 for the cropland. Our calculations highlight that the forest soil has the highest number of days per year where the SWC is below the wilting point (99.7 days/year), and based on the worst-case scenario, it can increase up to 224.7 days/year. However, general scenario-based estimates showed that vineyards are the most vulnerable to projected climate change in this area. Our study highlights the limitations of potential land use change for specific agricultural areas, and emphasizes the need to implement water retention measures to keep these agricultural settings sustainable.

Abstract

This chapter presents an overview of the current climate crisis, major sources of GHG emissions, and impacts from the agriculture sector contributing to global warming. Further, the chapter discusses the challenges in reducing GHG emissions from the agriculture sector. Major changes in the agriculture sector would be required if the impact due to climate change is to be limited to 1.5°C target. According to the authors, overcoming the challenges to reduce GHG emissions in the agriculture sector will require specific technological, investment, and policy solutions suitable for different agro-ecological and socio-economic settings. These solutions must be designed and implemented at different scales, both for developed and developing countries, for large- and small-scale farms, and should be sustainable, environmentally, socially, and economically. The chapter discusses the major challenges of the current farming systems, followed by a review of design approaches and pathways for a transition towards sustainable CNRFS. Towards the end, the chapter provides a brief outline of the book and justification.

Abstract

This book presents evidence-based research on climate-neutral and resilient farming systems and further provides innovative and practical solutions for reducing greenhouse gas emissions and mitigating the impact of climate change.Intensive farming systems are a significant source of greenhouse gas emissions, thereby contributing to global warming and the acceleration of climate change. As paddy rice farming is one of the largest contributors, and environmentally damaging farming systems, it will be a particular focus of this book. The mitigation of greenhouse gas emissions needs to be urgently addressed to achieve the 2°C target adopted by COP21 and the 2015 Paris Agreement, but this is not possible if local and national level innovations are not accompanied by international level cooperation, mutual learning and sharing of knowledge and technologies. This book, therefore, brings together international collaborative research experiences on climate-neutral and resilient farming systems compiled by leading scientists and experts from Europe, Asia and Africa. The chapters present evidence-based research and innovative solutions that can be applied or upscaled in different farming systems and regions across the world. Chapters also present models and technologies that can be used for practical implementation at the systemic level and advance the state of the art knowledge on carbon-neutral farming. Combining theory and practice, this interdisciplinary book provides guidance which can inform and increase cooperation between researchers from various countries on climate-neutral and resilient farming systems. Most importantly, the volume provides recommendations which can be put into practice by those working in the agricultural industry, especially in developing countries, where they are attempting to promote climate-neutral and resilient farming systems. The book will be of great interest to students and academics of sustainable agriculture, food security, climate mitigation and sustainable development, in addition to policymakers and practitioners working in these areas.

To document

Abstract

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.

Abstract

Galera, Matrigon 72SG and their parallel products are approved for weed control in oilseed rape every fourth years. In 2017, clopyralid, which is the active component in the herbicides, was found in Danish honey for the first time when honey from 2016 and 2017 was tested. The maximum acceptable residue level for clopyralid in honey has not been verified scientifically but is set at 0.05 mg/kg, which is not considered harmful to humans. However, 0.1 mg/kg releases a ban on sale of honey. In several of the tested honey samples from both years the amount of clopyralid was higher than 0.1 mg/kg. As nearly 50% of the Danish honey stems from nectar collected from rapeseed the use of clopyralid in oilseed rape poses a very serious economic problem for Danish beekeepers, and already in 2017, the sale of several spring honey lots was rejected. In 2019 and 2020, we tested the following hypotheses 1) nectar and pollen, collected from flowers of winter oilseed rape sprayed with clopyralid according to the regulations may contain clopyralid; 2) honey and pollen collected from beehives placed next to winter oilseed rape fields sprayed with clopyralid according to the regulations may contain clopyralid. Residues of clopyralid were found in all nectar, pollen and honey samples from treated plots and fields. In a large part of the samples, more than 0.1 mg clopyralid/kg was detected, which would have resulted in a ban on the sale of honey. The perspectives of the results are discussed.

To document

Abstract

Clopyralid is a systemic herbicide used in oilseed rape and other crops. It was found in Danish honey from 2016 in concentrations exceeding the maximum residue level (MRL) of 0.05 mg kg−1. About 50% of the Danish honey is based on nectar from winter oilseed rape. In 2019 and 2020, winter oilseed rape fields were sprayed with clopyralid just before the assigned spraying deadline. At flowering, nectar and pollen samples were collected and the content of clopyralid was measured. Honey and pollen samples were also collected from beehives next to ten conventional winter oilseed rape fields sprayed with clopyralid. Clopyralid was found in nectar and pollen from the experimental fields, and in honey and pollen from beehives next to the conventional fields. For most samples the content in nectar and honey exceeded the MRL. The concentrations found, may not pose any health risk for consumers, as the MRL is based on the original detection limit and not on toxicological tests. However, it can have a significant economical consequence for the beekeepers, who are not allowed to sell the honey if the concentration of clopyralid exceeds 0.1 mg kg−1. Reducing the acceptable applicable rate of clopyralid or implementing an earlier deadline for spraying of clopyralid may reduce the risk of contaminating bee food products. However, if it is not possible to obtain a satisfactory effect of clopyralid on the weed flora under these conditions, spraying with pesticides containing clopyralid should be restricted in winter oilseed rape. Determination of an MRL value based on toxicological tests might result in a higher value and make it acceptable selling the honey containing higher levels of clopyralid.

To document

Abstract

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.