Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2005

To document

Abstract

Here we report on low molecular weight organic acids in root exudates and soil solutions of Norway spruce and silver birch grown in rhizoboxes, sterile microcosms and the field. Monocarboxylic acids dominated in all three experimental systems. Formic, shikimic and oxalic acids were found in both spruce and birch microcosms. Fumaric acid was exclusive for spruce, while lactic, malonic, butyric and phthalic acids were only found in the birch microcosms. In spruce rhizoboxes oxalic, lactic, formic, butyric and pthalic acids were found. In addition, citric, adipic, propionic, succinic and acetic acids were observed in the rhizosphere of birch. Behind root windows in the field, only oxalic and lactic acids were found in the rhizosphere of spruce fine roots, whereas also formic and phthalic were observed close to birch fine roots, all at low concentrations. The rhizosphere of mycorrhizal short roots of birch contained butyric acid along with the acids observed for birch fine roots. Our results emphasise that characteristics of both the trees e.g. species, developmental stage, root density, mycorrhizal status, and the experimental system, i.e. growth conditions are important for the composition and the amount of organic acids. We conclude that the rhizosphere of birch contains more organic acids at higher concentrations than spruce. (C) 2004 Elsevier Ltd. All rights reserved. Here we report on low molecular weight organic acids in root exudates and soil solutions of Norway spruce and silver birch grown in rhizoboxes, sterile microcosms and the field. Monocarboxylic acids dominated in all three experimental systems. Formic, shikimic and oxalic acids were found in both spruce and birch microcosms. Fumaric acid was exclusive for spruce, while lactic, malonic, butyric and phthalic acids were only found in the birch microcosms. In spruce rhizoboxes oxalic, lactic, formic, butyric and pthalic acids were found. In addition, citric, adipic, propionic, succinic and acetic acids were observed in the rhizosphere of birch. Behind root windows in the field, only oxalic and lactic acids were found in the rhizosphere of spruce fine roots, whereas also formic and phthalic were observed close to birch fine roots, all at low concentrations. The rhizosphere of mycorrhizal short roots of birch contained butyric acid along with the acids observed for birch fine roots. Our results emphasise that characteristics of both the trees e.g. species, developmental stage, root density, mycorrhizal status, and the experimental system, i.e. growth conditions are important for the composition and the amount of organic acids. We conclude that the rhizosphere of birch contains more organic acids at higher concentrations than spruce.

Abstract

Intensive monitoring plots of the ICP Forests gathered an amount of data about the ground vegetation in forest ecosystems throughout Europe. Each Country, applying different field techniques, conform to common rules of procedure, under the suggestions of a dedicated Expert Panel which implemented a Unified Coded Flora and comparability targets. Data series are foreseen to contribute to: definition of the forest ecosystem state and changes evaluation; assessment of the specific plant diversity at the ecosystems level. The contribution to scientific knowledge and to Global and Pan-European biodiversity initiatives and networks (ICP-IM, MCPFE, CBD, Forest BIOTA, ALTER-net, etc.) are also underlined. In spite of site-related data, first results (more than 670 plots, with large differences in plant diversity) depict the linkages with temperature, precipitation, dominant tree species and actual soil acidity. Nitrogen deposition seems to have some significant influence, which claims to further studies. Plant data series from ICP Forest’s plot, can be used for on-site confirmation of models including biodiversity k-factors and environment relations.

Abstract

About 22 % of the conventional dairy and cash crop farmers in Norway were considering or were planning to convert to organic farming during the next four years. For these farmers, here called potential converters, higher soil fertility, professional challenges, profitability, and organic farming payments were important motives for considering to convert.

Abstract

About 22 % of the conventional dairy and cash crop farmers in Norway were considering or were planning to convert to organic farming during the next four years. For these farmers, here called potential converters, higher soil fertility, professional challenges, profitability, and organic farming payments were important motives for considering to convert.

Abstract

Mergers and acquisitions have lead to an increase in company size for manufacturers as well as for distributors and retailers of structural lumber. The effect of this mutual dependency in customer-supplier relationships increases, opening for opportunities to search for efficiency improvements across company borders.This article report the findings from a case study involving a major lumber manufacturing corporation in Norway and its largest customer, a vertically integrated distributor and home improvement retailer. In particular, the order process extending from identification of demand at the retail store to fulfilment of demand was comprehensively mapped, and possible areas for improved efficiency in the supply chain were identified.Using this approach, simple solutions for process improvement are commonly found, simply because individual actors rarely focus on optimising the complete supply chain, but rather sub-optimise a small fraction of the chain.The article also discusses some of the problems encountered when developing measures of performance intended to monitor and improve the process across company borders. Creating measures for monitoring performance is technically and methodologically difficult when dealing with several actors in a complex system using different business systems. The challenge greatly increases when the actors business objectives and philosophies are traditionally conflicting.