Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2009
Abstract
No abstract has been registered
Authors
Christian Guido Bruckner Hans-Peter Grossart Peter, G. KrothAbstract
No abstract has been registered
Authors
David Bredström Petrus Jönsson Mikael RönnqvistAbstract
A cost efficient use of harvesting resources is important in the forest industry. The main planning is made in an annual resource plan which is continuously revised. The harvesting operations are divided into harvesting and forwarding. The harvesting operation fells trees and put them in piles in the harvest areas. The forwarding operation collects piles and moves them to storage locations adjacent to forest roads. These operations are done by machines (harvesters, forwarders and harwarders) and these are operated by crews living in cities/villages which are within some maximum distance from the harvest areas. Machines, harvest teams and harvest areas have different characteristic and properties and it is difficult to come up with the best possible match throughout the year. The aim with the planning is to come up with a cost efficient plan The total cost is based on three parts; production cost, traveling cost and moving cost. The production cost is the cost for the harvesting and the forwarding. The traveling cost is the cost for driving back and forward (daily) to the harvest area from the home base. Moving cost is associated with moving the machines and equipment between harvest areas. The Forest Research Institute of Sweden has together with a number of Swedish forest companies developed a decision support platform for the planning. An important aspect is to come up with high quality plans within short computational time. A central part is an optimization model which integrates assignment of machines to harvest areas and scheduling of the harvest areas during the year for each machine. The problem is complex and we propose a two phase solution method where we first solve the assignment problem and in a second stage the scheduling. In order be able to control the scheduling also in phase 1, we have introduced an extra cost component which balances the geographical spread of the assignments in phase 1. We have tested the solution approach on a case study from one of the larger Swedish forest companies. This case study involves 46 machines and 968 harvest areas representing a log volume of 1,33 million cubic meters. We describe some numerical results and experiences from the development and tests.
Abstract
No abstract has been registered
Abstract
Control of dock species are a true bottleneck in the development of grassland based organic forage production in Norway. Rumex obtusifolius, Rumex crispus and Rumex longifolius are among the most important perennial weeds in grassland areas throughout the world. These dock- species are undesired in grasslands because they decrease yields and reduce forage feeding value. The experiment in our study is carried out as a full-factorial design, including key-factors, which may influence dock behaviour significantly. The first factor, (i) date of grassland establishment, may be important for preventing /decreasing the flush of seedlings from seeds as well as shoots from root fragments. The purpose of the second factor, (ii) black fallow, is both false seedbed preparation and decreasing food reserves in underground plant parts. The third factor, (iii) is the use of equipment for cutting the taproot either (a) before ploughing by using a tractor propelled rotovator, or (b) cutting the dock taproot in the same operation as ploughing by using a prototype ¿two layer dockplough¿. The biological background for cutting the taproot before ploughing is that many studies have shown that new shoots only come from the 5 upper cm of the taproot. Furthermore, our hypothesis is that shoots from highly fragmented regenerative parts (the neck) of the taproot placed deep will not reach the soil surface before their reserves are depleted. Experiments were carried out at 3 and 4 locations in 2007 and 2008, respectively. Weed development were assessed as number of emerging seedlings as well as number of sprouting plants from root fragments, both in the year when the treatments were carried out and the following year. The results are yet not completely analyzed, but preliminary results indicate that plants from seeds frequently are more numerous than plants from roots. At least at some locations and years both the use of rotovator and the ¿dock plough¿, has reduced the number of plants from root fragments with approx. 50%. However, our experiments have shown that ¿dock plough¿ prototype has to be improved, especially because it did not cut the taproot near the open furrow, and did not bury the green parts well enough.
Authors
Ingerd Skow Hofgaard Katarzyna Marzec Guro Brodal Birgitte Henriksen May Bente Brurberg Anne-Marte TronsmoAbstract
Microdochium nivale (syn. Microdochium nivale var. nivale) and Microdochium majus (syn. Microdochium nivale var. majus) are important pathogens which cause snow mould on grasses and winter cereals. These fungi are also able to cause leaf blotch of oat and seedling blight, foot rot and ear blight in cereals. Although no distinct differences in the host range of M. nivale and M. majus are found, indications for differences in host preferences between these fungal species have previously been discussed. The culture collection at Bioforsk contains about 250 Microdochium sp. isolated from grasses and cereals over the last 20 years. Most of the isolates collected from leaves of cereals displaying snow mould symptoms in spring, were identified as M. nivale (71 %), whereas most of the isolates collected from cereal seeds (mostly wheat) belong to the species M. majus (92 %). All, except one out of the sixty nine Microdochium sp. isolated from grass leaves were identified as M. nivale (99 %). The relatively higher incidence of M. majus vs. M. nivale on cereal seeds (mostly wheat) harvested in Norway, is in agreement with studies in UK (Parry et al. 1995). Parry et al. suggested that higher natural occurrence of M. majus (vs. M. nivale) on seeds of cereals could be partly due to the higher proportion of M. majus isolates producing perithecia and thus, a relatively higher amount of M. majus spores spreading to the ear (Parry et al. 1995). The high frequency of M. nivale (99 %) vs. M. majus on grasses collected in Norway could indicate that M. nivale is more aggressive on certain grass species. Studies in our lab indeed point towards a higher aggressiveness of M. nivale vs. M. majus on perennial ryegrass at low temperature (2?C) (Hofgaard et al 2006). However, the high incidence of M. nivale on grass leaves could also be caused by differences in temperature preferences, saprophytic ability or ability to infect certain plant parts. Isolates of M. nivale display a higher in vitro growth rate compared to isolates of M. majus at 2?C (Hofgaard et al. 2006). In conclusion, the higher natural occurrence of M. nivale vs. M. majus on turf grasses and the relatively higher aggressiveness of M. nivale on perennial ryegrass could indicate that M. nivale somehow is better adapted to infect certain grass species.
Abstract
Due to the exponential increase in production of engineered nanomaterials, concerns are raised about their inevitable spreading and fate in the environment. In this study we examined the uptake and excretion kinetics of cobalt and silver nanoparticles (NPs) in Eisenia fetida, as well as their internal distribution within earthworms. We hypothesised that the uptake, retention time and internal distribution of cobalt and silver depend on their speciation, i.e. whether they are absorbed as ions or nanoparticles. Nanoparticles were subjected to neutron activation prior to the experiment, in order to facilitate tracing and quantification in earthworms by gamma counting and autoradiography. Ions and NPs were added to the food, horse manure (HM). The treatments were Co2+ 0.70 µg/kg HM, CoNP 0.69 mg/kg HM, Ag+ 0.54 mg/kg HM, AgNP 0.45 mg/kg HM, and control. The experiment followed the OECD guidelines, with one month uptake and two months excretion for silver treatments, and four months excretion for cobalt treatments. The patterns of accumulation were highly different for cobalt and silver. The concentration ratios (Bq/g worm / Bq/g food) after one month uptake were 0.93 ± 0.36 and 2.02 ± 0.65 for CoNP and Co2+ respectively, and almost all absorbed CoNP and Co2+ remained within the worms after 4 months excretion. The Ag concentration ratios after one month uptake were 0.015 ± 0.016 and 0.054 ± 0.024 for AgNP and Ag+ respectively, with a subsequent excretion of almost all AgNP and Ag+ within a few days. In addition to information on uptake and excretion kinetics, gamma counting on individual organs, coupled to autoradiography on worm transects gave information on distribution of cobalt and silver NPs within the body, and the target organs for these NPs.
Authors
Belachew Asalf Tadesse Arne Stensvand David M. Gadoury Robert C Seem Andrew Dobson Anne-Marte TronsmoAbstract
Development of ontogenic resistance to powdery mildew (Podosphaera aphanis) in strawberry fruit has not been quantified, and thus cannot be exploited in disease management programs. Four commercially-relevant strawberry cultivars were evaluated for ontogenic resistance to powdery mildew. Fruits were inoculated at one of the four growth stages: flowering, green, white and early pink fruit. There was a significant difference between and within cultivars at the bloom and green stage of inoculations (P <0.05) for both disease incidence and severity. On average 16.4, 39.5, 48.7, and 60.3 % of the fruits inoculated at bloom developed powdery mildew in cultivars Elan, Korona, Frida and Inga, respectively. None of the cultivars developed powdery mildew when inoculated at the pink stage. It may be concluded that flowers and green fruits of strawberry were much more susceptible to powdery mildew infection than white and pink fruits. The high susceptibility of cultivars at the flower and early green stages seemed coincident with the succulent nature of the fruits at these stages, making it easy for penetration and establishment of mildew. Control measures targeting at these critical windows of fruit susceptibility are likely to reduce yield loss.
Abstract
No abstract has been registered
Authors
Daniel P. Rasse Karin Knoth de Zarruk Line Tau StrandAbstract
No abstract has been registered