Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Abstract
The Norwegian CORINE land cover (CLC2000) was completed autumn 2008. The CLC map was generated automatically from a number of dataset using GIS-techniques for map generalisation. The CLC map has a coarse resolution and it is also using a classification system developed in an environment very different from the Nordic. It is therefore interesting to evaluate both content and correctness of CLC. This study shows that there is a good resemblance between the CLC classes and detailed, large scale maps. The diversity in classes on the other hand, is lost due to the CLC classification system.
Authors
Håvard Kauserud Einar Heegaard Mikhail Semenov Lynne Boddy Rune Halvorsen Leif Christian Stige Tim H. Sparks Alan C. Gange Nils Christian StensethAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Jari Vauhkonen Liviu Ene Svein Solberg Marius Hauglin Vegard Lien Petteri Packalén Terje Gobakken Erik Næsset Timo Tokola Matti MaltamoAbstract
The aim of this study was to validate and compare single-tree detection algorithms under different forest conditions. Field data and corresponding airborne laser scanning (ALS) data were acquired from boreal forests in Norway and Sweden, coniferous and broadleaved forests in Germany, and pulpwood plantations in Brazil. The data represented a variety of forest types from pure Eucalyptus stands with known ages and planting densities to conifer-dominated Scandinavian forests and more complex deciduous canopies in Central Europe. ALS data were acquired using different sensors with pulse densities varying between the data sets. Field data in varying extent were associated with each ALS data set for training purposes. Treetop positions were extracted using altogether six different algorithms developed in Finland, Germany, Norway and Sweden, and the accuracy of tree detection and height estimation was assessed. Furthermore, the weaknesses and strengths of the methods under different forest conditions were analyzed. The results showed that forest structure and density strongly affected the performance of all algorithms. The differences in performance between methods were more pronounced for tree detection than for height estimation. The algorithms showed a slightly better performance in the conditions for which they were developed, while some could be adapted by different parameterization according to training with local data. The results of this study may help guiding the choice of method under different conditions and may be of great value for future refinement of the single-tree detection algorithms.
Abstract
The airborne laser scanning (ALS) penetration rate, i.e. the ratio of ground echoes to total echoes, is a proxy for gap fraction. Hence, ALS has a potential for monitoring forest properties that are related to gap fraction, such as leaf area index, canopy cover and disturbance. Furthermore, two gap types may be distinguished: While a pulse that only produces a ground echo most likely hit a large, between-tree gap, a pulse that produces a ground echo as the last of several returns most likely hit smaller, within-canopy gaps. This may be utilized to distinguish between disturbance types such as defoliation and tree removal. However, the ALS penetration rate needs to be calibrated with gap fraction measurements in the field, because it is influenced by technical properties of the acquisition. The aim of this study was to quantify the magnitude of this influence, by comparing repeated acquisitions with different technical specifications. We had at hand 12 ALS acquisitions which could be combined into six pairs, from four spruce and pine dominated forests in Norway. We established 20x20 m grids, and for each grid cell we extracted three penetration variables: first echo penetration, last-of-many echo penetration, and total (i.e., first and last echo). We log-transformed the penetration variables (P1 and P2) from two laser acquisitions, and fitted the no-intercept, linear model log(P1) = log(P2), applying total least squares regression analysis. In a majority of the cases, the penetration variables were very similar, i.e. they deviated by <10%. For the first echo penetration the slopes varied from 0.87 to 1.07 and the R2 values ranged between 0.91 and 0.99. For the last-of-many echo penetration, there was generally weaker correspondence with slopes varying from 0.78 to 1.02, and R2 values ranging from 0.60 to 0.94. Finally, for the total penetration there was again stronger agreement with slopes in the range 0.83-1.03 and R2 values from 0.88 to 0.99. In conclusion, it seems that the penetration ability of different ALS scans in many cases are very similar, and further research may reveal ranges of standardized settings for which field inventory can be redundant.
Authors
Miguel D. Mahecha Markus Reichstein Martin Jung Sonia I. Seneviratne Sönke Zaehle Christian Beer Maarten C. Braakhekke Nuno Carvalhais Holger Lange Guerric Le Maire Eddy MoorsAbstract
Terrestrial biosphere models are indispensable tools for analyzing the biosphere-atmosphere exchange of carbon and water. Evaluation of these models using site level observations scrutinizes our current understanding of biospheric responses to meteorological variables. Here we propose a novel model-data comparison strategy considering that CO2 and H2O exchanges fluctuate on a wide range of timescales. Decomposing simulated and observed time series into subsignals allows to quantify model performance as a function of frequency, and to localize model-data disagreement in time. This approach is illustrated using site level predictions from two models of different complexity, Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and Lund-Potsdam-Jena (LPJ), at four eddy covariance towers in different climates. Frequency-dependent errors reveal substantial model-data disagreement in seasonal-annual and high-frequency net CO2 fluxes. By localizing these errors in time we can trace these back, for example, to overestimations of seasonal-annual periodicities of ecosystem respiration during spring greenup and autumn in both models. In the same frequencies, systematic misrepresentations of CO2 uptake severely affect the performance of LPJ, which is a consequence of the parsimonious representation of phenology. ORCHIDEE shows pronounced model-data disagreements in the high-frequency fluctuations of evapotranspiration across the four sites. We highlight the advantages that our novel methodology offers for a rigorous model evaluation compared to classical model evaluation approaches. We propose that ongoing model development will benefit from considering model-data (dis)agreements in the time-frequency domain.