Hans Olav Eggestad
Senior Research Scientist
(+47) 924 49 405
hans.olav.eggestad@nibio.no
Place
Ås O43
Visiting address
Oluf Thesens vei 43, 1433 Ås
Authors
Franziska Fischer Marianne Bechmann Hans Olav Eggestad Sigrun Hjalmarsdottir Kværnø Jian LiuAbstract
No abstract has been registered
Abstract
Livestock husbandry has raised enormous environmental concerns around the world, including water quality issues. Yet there is a need to document long-term water quality trends in livestock-intensive regions and reveal the drivers for the trends based on detailed catchment monitoring. Here, we assessed the concentration and load trends of dissolved reactive phosphorus (DRP) in streamwater of a livestock-intensive catchment in southwestern Norway, based on continuous flow measurements and flow-proportional composite water sampling. Precipitation and catchment-level soil P balance were monitored to examine the drivers. At the field level, moreover, the relationship between soil P balance and soil test P (measured using the ammonium lactate extraction method, P-AL) was assessed. Results showed that on average of 20 years 95 % of the P was applied to the catchment during March–August, when 40 % of annual precipitation and 25 % of annual discharge occurred. The low runoff helped reduce P loss following P applications. However, flow-weighted annual mean DRP concentration significantly increased with increasingly cumulative soil P surplus (R2 = 0.55, p = 0.0002). With a mean annual P surplus of 8.8 kg ha−1, the annual mean DRP concentration (range: 49–140 μg L−1; mean: 80 μg L−1) and annual DRP load (range: 0.35–1.46 kg ha−1; mean: 0.65 kg ha−1) significantly increased over the 20-year monitoring period (p = 0.001 and 0.0003, respectively). At the field level, P-AL concentrations were positively correlated with soil P balances (R2 = 0.48, p < 0.0001), confirming the long-term impact of P balances on the risks of P loss. The study highlights the predominant role of long-term P balances in affecting DRP loss in livestock-intensive regions through the effect on soil test P.
Abstract
No abstract has been registered