Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

To document

Abstract

This study aimed to investigate mycotoxin contamination of cereal grain commodities for feed and food production in North Western Europe during the last two decades, including trends over time and co-occurrence between toxins, and to assess possible effects of climate on the presence of mycotoxins. For these aims, analytical results related to mycotoxin contamination of cereal grain commodities, collected in the course of national monitoring programmes in Finland, Sweden, Norway and the Netherlands during a 20-year period, were gathered. Historical observational weather data, including daily relative humidity, rainfall and temperature, were obtained from each of these four countries. In total 6382 records, referring to individual sample results for mycotoxin concentrations (one or more toxins) in cereal grains were available. Most records referred to wheat, barley, maize and oats. The most frequently analysed mycotoxins were deoxynivalenol, 3-acetyl-deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin and zearalenone. Deoxynivalenol had the highest overall incidence of 46%, and was mainly found in wheat, maize and oats. Mycotoxins that showed co-occurrence were: deoxynivalenol and 3-acetyl-deoxynivalenol in oats; deoxynivalenol and zearalenone in maize and wheat; and T-2 toxin and HT-2 toxin in oats. The presence of both deoxynivalenol and zearalenone in wheat increased with higher temperatures, relative humidity and rainfall during cultivation, but the presence of nivalenol was negatively associated with most of these climatic factors. The same holds for both nivalenol and deoxynivalenol in oats. This implies that climatic conditions that are conducive for one toxin may have a decreasing effect on the other. The presence of HT-2 toxin in oats showed a slight decreasing trends over time, but significant trends for other toxins showed an increasing presence during the last two decades. It is therefore useful to continue monitoring of mycotoxins. Obtained results can be used for development of predictive models for presence of mycotoxins in cereal grains.

To document

Abstract

A survey of the prevalence of skin blemish diseases in potatoes after the growing seasons of 2008 and 2009 was carried out on 247 potato lots representing different cultivars and production regions in Norway. The results showed the presence of silver scurf (Helminthosporium solani) in all lots. Skin spot (Polyscytalum pustulans) and black scurf (Rhizoctonia solani) were found in 80% of the lots, and black dot (Colletotrichum coccodes) and common scab caused by Streptomyces spp. were present in 50–70%. Also, powdery scab (Spongospora subterranea) occurred in 65–80% of the lots, and root-lesion nematodes (Pratylenchus spp.) were detected in 60% of the sub-samples that exhibited symptoms of common scab.

To document

Abstract

Heterobasidion parviporum, a common pathogenic white-rot fungus in managed Norway spruce forests in northern and central Europe, causes extensive decay columns within stem heartwood of the host tree. Infected trees combat the lateral spread of decay by bordering the heartwood with a fungistatic reaction zone characterized by elevated pH and phenol content. To examine the mode of fungal feeding in the reaction zone of mature Norway spruce trees naturally infected by H. parviporum, we conducted spatial proWling of pectin and hemicellulose composition, and established transcript levels of candidate fungal genes encoding enzymes involved in degradation of the diVerent cell wall components of wood. Colonized inner heartwood showed pectin and hemicellulose concentrations similar to those of healthy heartwood, whereas the carbohydrate proWles of compromised reaction zone, irrespective of the age of fungal activity in the tissue, indicated selective fungal utilization of galacturonic acid, arabinose, xylose and mannose. These data show that the rate of wood decay in the reaction zone is slow. While the up-regulation of genes encoding pectinases and hemicellulases preceded that of the endoglucanase gene during an early phase of fungal interaction with xylem defense, the manganese peroxidase gene showed similar transcript levels during diVerent phases of wood colonization. It seems plausible that the reaction zone components of Norway spruce interfere with both lignin degradation and the associated co-hydrolysis of hemicelluloses and pectin, resulting in a prolonged phase of selective decay.