Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

To document

Abstract

The re-measurement of permanent forest inventories offers a unique opportunity to assess the occurrence and impact of forest disturbances. The present study aims at exploring the main forest damages in Norway based on the extensive data of several consecutive national forest inventories during the period 1995–2014. Five of the most common disturbance agents in Norway are selected for analysis: wind, snow, browsing, fungus and insect damage. The analyses focuses on the frequency and variation along time, the average damage at stand level and the spatial patterns of damage occurrence, resulting in a characterization of the damage produced by disturbances in Norway. The highest damage occurrences by disturbance agent are due to browsing, snow and wind. Snow presents a decreasing temporally trend in damage frequency in the studied period. By forest type, mature and intermediate birch forest are found to be more affected by snow damage, whereas mature spruce forest is by wind damage. The results from this study provide support to the hypothesis that damages by autumnal moth (Epirrita autumnata) on birch are more common in mature stands. No major attacks from bark beetle (Ips typographus) are found, probably related to the lack of major storm damages in the period. Forest types susceptibility to fungus has no apparent variation over time except in the last years, as increased occurrence is observed on mature spruce stands probably correlated with warmer than average periods. Browsing damage causes the most severe losses, as expected, in young stands, and is allocated mainly on the most productive forests. Although some of the disturbances present locally moderate effects, the results show no major disturbances threatening Norwegian forests in the studied period. Finally, the Norwegian national forest inventory demonstrates its reliability as a basis to understand the occurrence and effects of major natural disturbances.

To document

Abstract

During the last ten years, Norwegian cereal grain industry has experienced large challenges due to Fusarium spp. and Fusarium mycotoxin contamination of small-grained cereals. To prevent severely contaminated grain lots from entering the grain supply chain, it is important to establish surveys for the most prevalent Fusarium spp. and mycotoxins. The objective of our study was to quantify and calculate the associations between Fusarium spp. and mycotoxins prevalent in oats and spring wheat. In a 6-year period from 2004-2009, 178 grain samples of spring wheat and 289 samples of oats were collected from farmers’ fields in South East Norway. The grains were analysed for 18 different Fusarium-mycotoxins by liquid chromatography – mass spectrometry. Generally, the median mycotoxin levels were higher than reported in Norwegian studies covering previous years. The DNA content of Fusarium graminearum, Fusarium culmorum, Fusarium langsethiae, Fusarium poae and Fusarium avenaceum were determined by quantitative PCR. We identified F. graminearum as the main deoxynivalenol (DON) producer in oats and spring wheat, and F. langsethiae as the main HT-2 and T-2-toxins producer in oats. No association was observed between quantity of F. graminearum DNA and quantity of F. langsethiae DNA nor for their respective mycotoxins, in oats. F. avenaceum was one of the most prevalent Fusarium species in both oats and spring wheat. The following ranking of Fusarium species was made based on the DNA concentrations of the Fusarium spp. analysed in this survey (from high to low): F. graminearum = F. langsethiae = F. avenaceum > F. poae > F. culmorum (oats); F. graminearum = F. avenaceum > F. culmorum > F. poae = F. langsethiae (spring wheat). Our results are in agreement with recently published data indicating a shift in the relative prevalence of Fusarium species towards more F. graminearum versus F. culmorum in Norwegian oats and spring wheat.