Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

In Norway, Fusarium diseases and associated mycotoxin contamination in spring oats occasionally cause problems for growers, livestock producers and the food and feed industries. Besides weather factors, such as rainfall and temperature in the critical periods around flowering and before harvest, inoculum production and disease development are influenced by agricultural practices. The occurrence of Fusarium graminearum and DON in oat grain lots do not generally correlate with that of Fusarium langsethiae and HT-2/T-2-toxins. Therefore, to develop a robust disease management strategy, there is a need to reveal the influence of weather and agricultural practice on disease development in oats for both these fungal species. Through various research projects NIBIO researchers have performed field trials to study the effects of straw management, tillage practice, cultivar, and chemical and biological control treatments on the development of Fusarium spp. and mycotoxins in oats. In particular we have investigated whether the amount of straw residues and tillage practice influences the survival of Fusarium spp. in residues, and the subsequent Fusarium spp. infection of the harvested grains. In addition, Fusarium spp. DNA and mycotoxin content (DON and HT-2/T-2) have been analysed in oats from current official cultivar trials. This work has been a collaboration between NIBIO and the Norwegian Agricultural Extension Service. Results will be presented on the Fusarium spp. and mycotoxin contamination of grains harvested from oats grown under various agricultural practices. High incidence of Fusarium avenaceum are often observed in harvested grains as well as straw residues. Fusarium graminearum is also commonly detected. Despite the high concentrations of F. langsethiae DNA and HT-2/T-2 toxins sometimes recorded in oat grain, only low levels of F. langsethiae have been detected in crop residues and air samples. We speculate that the life cycle of F. langsethiae differs from those of F. graminearum and F. avenaceum with regards to survival, inoculum production and dispersal.

To document

Abstract

In Scandinavia, the bird cherry-oat aphid Rhopalosiphum padi overwinter as eggs on the bird cherry tree Prunus padus. Branches of P. padus were collected at the late February / early March from 17 locations in Norway over a three-year period. We found 3599 overwintering aphid eggs, 59.5% of which were dead. Further, a total of 879 overwintering fungus-killed cadavers were observed. These cadavers were found close to bud axils, where overwintering eggs were also usually attached. Cadavers were infected with either Zoophthora cf. aphidis or Entomophthora planchoniana. All the fungal-killed cadavers were filled with overwintering structures of Z. cf. aphidis (as resting spores) or E. planchoniana (as modified hyphal bodies). We found a significant negative correlation between eggs and cadavers per branch. However, both numbers of eggs and cadavers varied greatly between years and among tree locations. This is the first report of E. planchoniana overwintering in R. padi cadavers as modified hyphal bodies. We discuss whether P. padus may act as an inoculum reservoir for fungi infecting aphids in cereals in spring.