Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

Abstract

The aim of this study was to compare various types of peat-free or peat-reduced growing media on growth and flowering of ‘Purple piruette’ petunia hybrids. In experiment 1, 30 variants of growing media, including commercial peat-based growing media, different peat-reduced and peat-free mixtures based on garden/park waste compost and wood fiber were tested. All the peat-free variants failed in producing normal, healthy plants without chlorosis. A commercial peat-reduced growing medium with peat, garden/park waste-compost and crushed rock material (0-2 mm), base fertilized with chicken manure, and similar growing media mixtures with other types of base fertilizer gave larger plants with more flowers than the peat-based reference. The highest performing mixture with the smallest amount of peat (35% wood fiber, 30% garden park/park waste-compost, 30% peat and 5% sand) gave equal results as the commercial peat-reduced growing medium. In experiment 2, further studies of the effect of peat reduction by incorporation of wood fiber and four compost types were performed. The effect of start fertilizer incorporation to the substrates was also assessed. One of the peat-free variants with compost and wood fiber gave normal plants with rich flowering but didn’t reach the performance of pure peat on plant size. The pH (H2O) of the composts seems to be a key factor for successful substrate mixtures of compost and wood fiber. The composts with highest pH gave small plants and start fertilizer had no effects on the growth. The results show that there is a potential for development of peat-free substrates based on compost and wood fiber presuming that pH (H2O) of the composts is not too high.

To document

Abstract

Seasonal pollen allergy is a major public health concern, with many different pollen aeroallergens being present in the atmosphere at varying levels during the season. In Norway, information about spatiotemporal variation of pollen aeroallergens is currently lacking, leading to reduced ability to manage and treat seasonal allergies. Seven pollen aeroallergens (alder, hazel, willow, birch, pine, grass and mugwort) were monitored daily for 16 years from 12 regions and coalesced to create regional pollen calendars. Seasonal statistics, such as seasonal pollen integral (SPIn), onset, duration and periods of high and very high concentrations, were calculated for all pollen types and regions. High days were further modelled with SPIn in a linear regression framework to investigate the connection between the strength of the season and number of days above high pollen thresholds. The tree pollen season occurred between January and mid-July, with the pollen aeroallergens birch and pine being the most prominent in all regions. The herb pollen season was observed to occur between June and mid-August, although mugwort was almost completely absent. The grass pollen season was mostly mild on average but more severe in some regions, primarily Kristiansand. South-east regions of Oslo, Kristiansand and Lillehammer had the overall highest pollen load, while northern regions of Bodø, Tromsø and Kirkenes had the overall lowest pollen loads. SPIn and days above high pollen thresholds had positive highly significant relationships (R2 > 0.85) for all pollen types, bar mugwort. Regional pollen calendars and seasonal statistics contribute to reliable information that can be used by medical professionals to effectively and timely manage and treat seasonal pollen allergies in Norway. Further research is needed to determine sensitization profiles of pine and willow.

To document

Abstract

Alternaria is a ubiquitous fungal genus with many allergenic and pathogenic species inhabiting grasslands. We hypothesise that grasslands (natural/man-made) host a diversity of fungal species whose spores have varying emission patterns. Therefore, the purpose of this study was to examine the potential of grasslands for emission, diversity and composition of Alternaria and other fungal species. To test the hypothesis, Hirst-type and multi-vial Cyclone samplers collected air samples from two grassland sites (unmanaged and managed) and a non-grassland site at Lakeside campus of the University of Worcester, United Kingdom for the period May to September 2019. The unmanaged grassland was originally planted with grasses and left uncut for three years. The managed grassland was a roadside verge that was cut once every year, typically after most grasses have flowered. We used optical microscopy and Illumina MiSeq sequencing to investigate the emission, abundance, diversity and composition of the fungal spores from each site alongside meteorological variables. Kruskal-Wallis and Wilcoxon tests examined differences in the bi-hourly Alternaria concentrations between the sites. Shannon's and Simpson's Index determined the diversity of the fungal spores between the unmanaged and non-grassland sites. The results showed that grasslands are a strong source of Alternaria spores with considerably higher numbers of clinically important days compared with the non-grassland site. The managed grassland varied in Alternaria spore emission pattern from the unmanaged, probably due to differences in environmental variables and cutting frequency. The unmanaged grassland and non-grassland sites showed a high diversity of fungi including Alternaria, Cladosporium, Ascochyta, Botrytis and Aureobasidium. Overall, the study shows that grasslands are a strong source of fungal spores with allergenic and pathogenic potential and have varying emission patterns, compared with nearby urban areas where monitoring stations are located. This information is useful for atmospheric modelling of airborne fungal spore sources and has implications for allergy sufferers in particular.

To document

Abstract

Climate change is and will continue to alter plant responses to their environment. This is especially prominent concerning the adaptive tracking in reproductive phenology. For wind pollinated plants, this will substantially influence their pollen seasonality, yet there are gaps in knowledge about how environmental variation influences pollen seasonality. To investigate this, we monitored daily atmospheric pollen concentrations of seven pollen types from ecologically, economically and allergenically important plants (alder, hazel, willow, birch, pine, grass and mugwort) in twelve Norwegian locations spanning the entire country for up to 28 years. Six daily meteorological variables (maximum temperature, precipitation, wind speed, relative humidity, solar radiation and atmospheric pressure) was obtained from the MET Nordic dataset with full data cover. The pollen seasonality was then modelled using four spatial, three temporal and the six meteorological variables in a generalized linear model approach with a negative binomial distribution to investigate how each variable group thematically and individually contribute to variation in pollen seasonality. We found that the full models explained the most variation, ranging from R2 = 20.3 % to 59.5 %. The models were also highly accurate, being able to predict 54.5 % to 99.1 % of daily pollen concentrations to within 20.1 pollen grains/m3. Overall, the temporal variables were able to explain more variation than spatial and meteorological variables for most pollen types. Month, altitude and maximum temperature were the most important single variables for each category. The importance of each variable could be traced back to their individual effects of reproductive phenology, plant metabolism, species distributions and pollen release processes. We further emphasise the importance of source maps and atmospheric regional transport models in further model improvements. By understanding the relevance of environmental variation to pollen seasonality we can make better predictions regarding the consequences of climate change on plant populations.

To document

Abstract

Background Vegetated infiltration systems such as raingardens and bioswales are challenging for plant growth and survival due to fluctuating hydrological conditions and further subsequent stresses. Aim Here, we investigated the effect of fluctuation hydrology on growth and flowering and subsequent winter frost hardiness or spring salt tolerance for two common raingarden plant species, Filipendula ulmaria, and Calamagrostis ×acutiflora ‘Karl Foerster’, under controlled conditions. Methods During summer, plants were exposed to four hydrological regimes, each with a different combination of repeating dry and wet cycles. Then, after natural winter acclimation and storage, plants went through standardized freezing tests to determine LT50 and regrowth potential or were exposed to four levels of salt treatments (Control, 28 mM, 56 mM, and 84 mM NaCl) in the following spring. Results We found that fluctuating hydrology reduced the growth of Filipendula ulmaria, experiencing cycles of 72 hours of flooding and 264 hours of drained conditions, followed by a reduction of growth and flowering after salt exposure. Calamagrostis xacutiflora was less responsive to both fluctuating hydrology and salinity. Cycles with the longest dry conditions (Wet-dry cycles) showed the strongest negative effect on the performance of tested species. The hydrological regimes did not influence freezing tolerance in either species. Conclusion Moderate hydrological fluctuations did not cause damage to vegetation in vegetated infiltration systems, at least under shaded conditions. At the same time, drought tolerance is an important trait for species and cultivars in raingardens during hydrological fluctuations. Our prediction that hydrological conditions that negatively affected plant growth would reduce subsequent frost and salinity tolerance was only partially supported.