Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document

Abstract

The global packaging sector has grown consistently, and the use of sustainable materials, including recycled and biodegradable products, is expected to rise. This study focuses on the potential of producing barriers for water and water in moist air (water vapor) from proteins to protect cellulosic materials. Owing to the specific requirements of packaging materials, the main subject of this research was their barrier and strength properties. The scope of this work includes selecting components and their physicochemical treatment to produce functionalized coatings on sprayed paper and pure films, as well as film-coated samples (paper laminated with film). The following tests were used to estimate the hydrophobic, hygroscopic, and strength properties: Cobb absorption, contact angle testing, dynamic vapor sorption, and dynamic mechanical analysis. In most cases, the spray-coated paper and film-coated samples absorbed less liquid water than untreated paper. Wheat gluten protein was the most effective water barrier. In all variants, the vapor sorption, desorption, and hysteresis effects (or the lack thereof) showed significant differences compared to those of cellulosic materials. All variants of the spray-coated and film-coated samples in the dynamic mechanical analysis showed an increase in the strength properties of the samples in comparison to the untreated paper. The increased humidity caused a significant loss in the mechanical properties of all variants, exceeding the strength loss of the untreated control samples.

To document

Abstract

Gymnosperms are long-lived, cone-bearing seed plants that include some of the most ancient extant plant species. These relict land plants have evolved to survive in habitats marked by chronic or episodic stress. Their ability to thrive in these environments is partly due to their phenotypic flexibility, and epigenetic regulation likely plays a crucial part in this plasticity. We review the current knowledge on abiotic and biotic stress memory in gymnosperms and the possible epigenetic mechanisms underlying long-term phenotypic adaptations. We also discuss recent technological improvements and new experimental possibilities that likely will advance our understanding of epigenetic regulation in these ancient and hard-to-study plants.

To document

Abstract

By optimizing size of shoot tips, preculture medium and exposure duration to PVS2, we established an efficient and wide-spectrum droplet-vitrification cryopreservation for shoot tips of raspberry (Rubus idaeus L.). This protocol yielded 80–100% and 67–100% of survival and shoot regrowth levels in cryopreserved shoot tips across 23 raspberry genotypes. Genetic integrity was assessed in cryo-derived regenerants after 3 months of post-cryopreservation using inter simple sequence repeat (ISSR), single nucleotide polymorphism (SNPs), and insertions and deletions (InDels). ISSR did not detect any polymorphic bands in the cryo-derived regenerants. Although the number of SNPs and InDels decreased in the cryo-derived regenerants, variation trends were similar between the cryo-derived regenerants and the control. Plant vegetative growth and root growth were assessed in the cryo-derived plants after 9 weeks of growth in greenhouse. There were no significant differences in plant vegetative growth measured by plant height, number of fully-opened leaved, leaf area, and fresh and dry weight between the cryo-derived plants and the control, although significant differences were observed in root growth measured by root total length, root average diameter and root volume between the two types of plants. The results obtained in the present study indicate that the droplet-vitrification method has great potential for cryopreservation of raspberry germplasm.