Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

Optimizing nitrogen (N) management in rice is crucial for China’s food security and sustainable agricultural development. Nondestructive crop growth monitoring based on remote sensing technologies can accurately assess crop N status, which may be used to guide the in-season site-specific N recommendations. The fixed-wing unmanned aerial vehicle (UAV)-based remote sensing is a low-cost, easy-to-operate technology for collecting spectral reflectance imagery, an important data source for precision N management. The relationships between many vegetation indices (VIs) derived from spectral reflectance data and crop parameters are known to be nonlinear. As a result, nonlinear machine learning methods have the potential to improve the estimation accuracy. The objective of this study was to evaluate five different approaches for estimating rice (Oryza sativa L.) aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) at stem elongation (SE) and heading (HD) stages in Northeast China: (1) single VI (SVI); (2) stepwise multiple linear regression (SMLR); (3) random forest (RF); (4) support vector machine (SVM); and (5) artificial neural networks (ANN) regression. The results indicated that machine learning methods improved the NNI estimation compared to VI-SLR and SMLR methods. The RF algorithm performed the best for estimating NNI (R2 = 0.94 (SE) and 0.96 (HD) for calibration and 0.61 (SE) and 0.79 (HD) for validation). The root mean square errors (RMSEs) were 0.09, and the relative errors were <10% in all the models. It is concluded that the RF machine learning regression can significantly improve the estimation of rice N status using UAV remote sensing. The application machine learning methods offers a new opportunity to better use remote sensing data for monitoring crop growth conditions and guiding precision crop management. More studies are needed to further improve these machine learning-based models by combining both remote sensing data and other related soil, weather, and management information for applications in precision N and crop management.

To document

Abstract

The current study provides an in vivo analysis of the production of reactive oxygen species (ROS) and oxidative stress in the nematode Caenorhabditis elegans following exposure to EU reference silver nanoparticles NM300K and AgNO3. Induction of antioxidant defenses was measured through the application of a SOD-1 reporter, and the HyPer and GRX biosensor strains to monitor changes in the cellular redox state. Both forms of Ag resulted in an increase in sod-1 expression, elevated H2O2 levels and an imbalance in the cellular GSSG/GSH redox status. Microscopy analysis of the strains revealed that AgNO3 induced ROS-related effects in multiple tissues, including the pharynx, intestinal cells and muscle tissues. In contrast, NM300K resulted in localized ROS production and oxidative stress, specifically in tissues surrounding the intestinal lumen. This indicates that Ag from AgNO3 exposure was readily transported across the whole body, while Ag or ROS from NM300K exposure was predominantly confined within the luminal tissues. Concentrations resulting in an increase in ROS production and changes in GSSG/GSH ratio were in line with the levels associated with observed physiological toxic effects. However, sod-1 was not induced at the lowest Ag concentrations, although reprotoxicity was seen at these levels. While both forms of Ag caused oxidative stress, impaired development, and reprotoxicity, the results suggest different involvement of ROS production to the toxic effects of AgNO3 versus NM300K.

To document

Abstract

Semelparous annual plants flower a single time during their 1‐yr life cycle, investing much of their energy into rapid reproduction. By contrast, iteroparous perennial plants flower multiple times over several years, and partition their resources between reproduction and persistence. To which extent evolutionary transitions between life‐cycle strategies are internally constrained at the developmental, genetic and phylogenetic level is unknown. Here we study the evolution of life‐cycle strategies in the grass subfamily Pooideae and test if transitions between them are facilitated by evolutionary precursors. We integrate ecological, life‐cycle strategy and growth data in a phylogenetic framework. We investigate if growth traits are candidates for a precursor. Species in certain Pooideae clades are predisposed to evolve annuality from perenniality, potentially due to the shared inheritance of specific evolutionary precursors. Seasonal dry climates, which have been linked to annuality, were only able to select for transitions to annuality when the precursor was present. Allocation of more resources to above‐ground rather than below‐ground growth is a candidate for the precursor. Our findings support the hypothesis that only certain lineages can respond quickly to changing external conditions by switching their life‐cycle strategy, likely due to the presence of evolutionary precursors.

To document

Abstract

Plants evolved in close contact with a myriad of microorganisms, some of which formed associations with their roots, benefitting from carbohydrates and other plant resources. In exchange, they evolved to influence important plant functions, e.g. defense against insect herbivores and other antagonists. Here, we test whether a fungus, Metarhizium brunneum, which is mostly known as an insect pathogen, can also associate with plant roots and contribute to above-ground plant defense. Cauliflower (Brassica oleracea var. botrytis) seeds were sown together with M. brunneum-inoculated rice grains, and the resulting plants subjected to leaf herbivory by the specialist Plutella xylostella. Activity of myrosinases, the enzymes activating glucosinolates, was measured before and after herbivory; larval consumption and plant weight at the end of experiments. Metarhizium brunneum clearly established in the plant roots, and after herbivory myrosinase activity was substantially higher in M. brunneum-treated plants than in controls; before herbivory, M. brunneum-treated and control plants did not differ. Leaf consumption was slightly lower in the M. brunneum-treated plants whereas total biomass and allocation to above- or below-ground parts was not affected by the Metarhizium treatment. Thus, M. brunneum associates with roots and primes the plant for a stronger or faster increase in myrosinase activity upon herbivory. Consistent with this, myrosinase function has been suggested to be rate-limiting for induction of the glucosinolate-myrosinase defense system. Our results show that M. brunneum, in addition to being an insect pathogen, can associate with plant roots and prime plant defense.

To document

Abstract

In the Nordic countries Finland, Norway and Sweden, the most common regeneration method is planting after clearcutting and, often, mechanical site preparation (MSP). The main focus of this study is to review quantitative effects that have been reported for the five main MSP methods in terms of survival and growth of manually planted coniferous seedlings of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) in clearcuts in these three countries. Meta analyses are used to compare the effects of MSP methods to control areas where there was no MSP and identify any relationships with temperature sum and number of years after planting. In addition, the area of disturbed soil surface and the emergence of naturally regenerated seedlings are evaluated. The MSP methods considered are patch scarification, disc trenching, mounding, soil inversion and ploughing. Studies performed at sites with predominately mineral soils (with an organic topsoil no thicker than 0.30 m), in boreal, nemo-boreal and nemoral vegetation zones in the three Fenno-Scandinavian countries are included in the review. Data from 26 experimental and five survey studies in total were compiled and evaluated. The results show that survival rates of planted conifers at sites where seedlings are not strongly affected by pine weevil (Hylobius abietis L.) are generally 80–90% after MSP, and 15–20 percent units higher than after planting in non-prepared sites. The experimental data indicated that soil inversion and potentially ploughing (few studies) give marginally greater rates than the other methods in this respect. The effects of MSP on survival seem to be independent of the temperature sum. Below 800 degree days, however, the reported survival rates are more variable. MSP generally results in trees 10–25% taller 10–15 years after planting compared to no MSP. The strength of the growth effect appears to be inversely related to the temperature sum. The compiled data may assist in the design, evaluation and comparison of possible regeneration chains, i.e. analyses of the efficiency and cost-effectiveness of multiple combinations of reforestation measures.

To document

Abstract

There is a need both in organic farming and on farms using integrated pest management for non-chemical measures that control the perennial weed flora. The effect of mechanical weeding and fertilisation on perennial weeds, fungal diseases and soil structure were evaluated in two different experiments in spring cereals. Experiment I included six strategies. The first strategy was (1) without specific measures against perennial weeds. The other strategies encompassed one or two seasonal control measures; (2) rhizome/root cutting with minimal soil disturbance in autumn, (3) hoeing with 24 cm row spacing, (4) combined hoeing and disc harrowing in autumn, (5) ‘KvikUp’ harrowing in spring, and (6) ‘KvikUp’ harrowing in spring and autumn. Experiment II included factor (i) inter-row hoeing and (ii) fertilisation level. This experiment included the comparison between normal row spacing (12 cm) with weed harrowing versus double row spacing (=24 cm) in combination with inter-row hoeing and 4 fertilisation levels (50–200 kg N ha−1). In experiment I the strategies consisting of no or one direct weed control measure (1, 2, 3 and 5) clearly did not control the perennial weeds. The two seasonal control measures (4 and 6) gave a satisfactory weed control and highest crop yield. The combination of best weed control and no measured harmful effects on soil structure or increase of fungal diseases may explain the highest yields for these strategies. In Experiment II, hoeing and 24 cm spacing gave less perennial biomass compared to 12 cm spacing. Grain yields increased linearly with increasing nitrogen input. The study shows that both inter-row hoeing and weed harrows, are important elements in integrated pest management practice and organic farming. In addition, our results indicate that efficient mechanical weeding is possible without harmful effects in crop rotation consisting of various spring cereals as regards soil structure and plant health.