Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2021
Authors
Alexander Kopatz Oddmund Kleven Ilpo Kojola Jouni Aspi Anita J. Norman Göran Spong Niclas Gyllenstrand Love Dalén Ida Marie Luna Fløystad Snorre Hagen Jonas Kindberg Øystein FlagstadAbstract
Knowledge about the connectivity among natural populations is essential to identify management units for effective conservation actions. Conservation-minded management has led to the recovery of large carnivore populations in northern Europe, possibly restoring connectivity between the two separated, but expanding brown bear (Ursus arctos) populations on the Scandinavian peninsula to the west and Karelia, a part of the large Eurasian population, to the east. The degree of connectivity between these populations has been poorly understood, therefore we investigated the extent of connectivity between the two populations using autosomal microsatellites and Y chromosome haplotypes in 924 male bears (the dispersing sex), sampled during a period of 12 years (2005–2017) across the transborder area where these two populations meet. Our results showed that the two populations are not genetically isolated as reported in earlier studies. We detected recent asymmetrical gene flow at a rate (individuals per generation) of 4.6–5.5 (1%) from Karelia into Scandinavia, whereas the rate was approximately 27.1–34.5 (8%) in the opposite direction. We estimated historical gene flow of effective number of migrants to be between 1.7 and 2.5 between the populations. Analyses of Y chromosome markers supported these results. Successful recovery and expansion of both populations led to the restoration of connectivity, however, it is asymmetric, possibly due to different recovery histories and population densities. By aligning monitoring between neighboring countries, we were able to better understand the biological processes across the relevant spatial scale. Brown bear Genetic structure Male gene flow Microsatellites Migration Recovery Ursus arctos Wildlife monitoring Y chromosome
Abstract
No abstract has been registered
Authors
Andrii Butkovskyi Yuying Jing Hege Bergheim Diana Lazar Ksenia Gulyaeva Sven R. Odenmarck Hans Ragnar Norli Karolina M. Nowak Anja Miltner Matthias Kästner Trine EggenAbstract
Pesticides in agricultural surface water runoff cause a major threat to freshwater systems. Installation of filter systems or constructed wetlands in areas of preferential run-off is a possible measure for pesticides abatement. To develop such systems, combinations of filter materials suitable for retention of both hydrophilic and hydrophobic organic pesticides were tested for pesticide removal in planted microcosms. The retention of six pesticides frequently detected in surface waters (bentazone, MCPA, metalaxyl, propiconazole, pencycuron, and imidacloprid) was evaluated in unplanted and planted pot experiments with novel bed material mixtures consisting of pumice, vermiculite, water super-absorbent polymer (SAP) for retention of ionic and water soluble pesticides, and synthetic hydrophobic wool for adsorption of hydrophobic pesticides. The novel materials were compared to soil with high organic matter content. The highest retention of the pesticides was observed in the soil, with a considerable translocation of pesticides into the plants, and low leaching potential, in particular for the hydrophobic compounds. However, due to the high retention of pesticides in soil, environmental risks related to their long term mobilization cannot be excluded. Mixtures of pumice and vermiculite with SAP resulted in high retention of i) water and ii) both hydrophilic and hydrophobic pesticides but with much lower leaching potential compared to the mineral systems without SAP. Mixtures of such materials may provide near natural treatment options in riparian strips and also for treatment of rainwater runoff without the need for water containment systems.
Authors
Jan Pisek Angela Erb Lauri Korhonen Tobias Biermann Arnaud Carrara Edoardo Cremonese Matthias Cuntz Silvano Fares Giacomo Gerosa Thomas Grünwald Niklas Hase Michal Heliasz Andreas Ibrom Alexander Knohl Johannes Kobler Bart Kruijt Holger Lange Leena Leppänen Jean-Marc Limousin Francisco Ramon Lopez Serrano Denis Loustau Petr Lukes Lars Lundin Riccardo Marzuoli Meelis Mölder Leonardo Montagnani Johan Neirynck Matthias Peichl Corinna Rebmann Eva Rubio Margarida Santos-Reis Crystal Schaaf Marius Schmidt Guillaume Simioni Kamel Soudani Caroline VinckeAbstract
Information about forest background reflectance is needed for accurate biophysical parameter retrieval from forest canopies (overstory) with remote sensing. Separating under- and overstory signals would enable more accurate modeling of forest carbon and energy fluxes. We retrieved values of the normalized difference vegetation index (NDVI) of the forest understory with the multi-angular Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo data (gridded 500 m daily Collection 6 product), using a method originally developed for boreal forests. The forest floor background reflectance estimates from the MODIS data were compared with in situ understory reflectance measurements carried out at an extensive set of forest ecosystem experimental sites across Europe. The reflectance estimates from MODIS data were, hence, tested across diverse forest conditions and phenological phases during the growing season to examine their applicability for ecosystems other than boreal forests. Here we report that the method can deliver good retrievals, especially over different forest types with open canopies (low foliage cover). The performance of the method was found to be limited over forests with closed canopies (high foliage cover), where the signal from understory becomes too attenuated. The spatial heterogeneity of individual field sites and the limitations and documented quality of the MODIS BRDF product are shown to be important for the correct assessment and validation of the retrievals obtained with remote sensing.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Årolilja Svedal JørgensrudAbstract
Ecological literacy in design education. Wool, textiles, and design in the context of agriculture, nature, and ecology.
Abstract
No abstract has been registered
Authors
Johan A. Stenberg Kjetil K. Melby Christer Magnusson Anders Nielsen Julie Rydning Micael Wendell Beatrix Alsanius Paal Krokene Mogens Nicolaisen Iben M. Thomsen Sandra A. I. Wright Trond RafossAbstract
Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, biological control, Nematodes, Phasmarhabditis californica, Moraxella osloensis. Parasitic nematodes and associated bacteria are increasingly being used for biocontrol of molluscs. Functionally, it is the bacteria that kill and thus control the targeted pests, but the function of the bacteria is dependent on the nematodes, which should be regarded as vectors of biocontrol. Although the nematodes and the bacteria have a symbiotic relationship within such biocontrol formulations, it should be noted that they are not dependent on each other in the wild, but can establish separate populations which can be free-living or hosted by other organisms. The biocontrol product Nemaslug 2.0 contains the nematode Phasmarhabditis californica (strain P19D) and the bacterial symbiont Moraxella osloensis (unknown strain). The nematode was first described in 2016 and has never been reported in Norway. The lack of reports suggests that it is absent from Norway, but this conclusion comes with a high degree of uncertainty since there have been limited search efforts. The climatic thresholds of the nematode are not known, but its current distribution, spanning widely varying climates, suggests that it could survive and establish in Norway. Natural spread from currently known areas of establishment to natural habitats in Norway is ruled out due to the nematode’s limited dispersal capacity. However, human-assisted spread (e.g. via the use of biocontrol products) and establishment would be likely if Nemaslug 2.0 is allowed for use in open fields in Norway. Use of Nemaslug 2.0 in greenhouses and other enclosed areas is not likely to facilitate spread to natural habitats in Norway provided that residues are properly handled. However, deposition of product residues from greenhouses to outdoor areas may result in local establishment of the nematode in the vicinity of the deposition. Phasmarhabditis californica has a broad host range and may parasitize both rare/endangered and common mollusc species. However, there is no scientific evidence suggesting that the nematode can affect natural populations of molluscs in wild habitats, or otherwise have negative effects on biodiversity. The nematodes’ association with the bacteria Moraxella osloensis is most likely lost, or at least weakened, in natural habitats, suggesting that the nematode becomes less capable of killing its hosts in the wild. Phasmarhabditis californica is not capable of harming or infecting humans. The bacterial species Moraxella osloensis is already present in Norway in a few locations and at a low abundance, and it may be native to Norway. Little is known regarding its distribution in natural environments, but the literature shows that it can infect humans and other mammals. In humans with immunodeficiency or other comorbidities, M. osloensis can cause meningitis, vaginitis, sinusitis, bacteremia, endocarditis, and septic arthritis. The risk of infection in people handling Nemaslug 2.0 can probably be substantially reduced by protective clothing and appropriate handling. We are not aware of any reported health issues arising from use of the previous version of Nemaslug, which also contains M. osloensis. Different strains of M. osloensis are known to vary in their sensitivity to antibiotics, and likely in other traits too. Thus, the lack of information provided about the strain identity and specific characteristics of the strain used in Nemaslug 2.0 generates a high degree of uncertainty regarding its pathogenicity, climate tolerance, sensitivity to antibiotics etc.