Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Abstract
No abstract has been registered
Abstract
In 2021, mean defoliation remained at approximately the same level as in 2020 with no change for broadleaves and only a very slight increase for conifers. Deciduous temperate oaks had the highest increase in mean defoliation (+1.4%), while common beech had the largest decrease (-1.7%). Based on the data of the past 20 years, trends show a considerable increase in defoliation of Austrian pine and evergreen oaks (7.1% and 6.7%, respectively). On the other hand, the increase in defoliation for deciduous temperate oaks (2.6%) and common beech (3.4%) has been relatively low and the trend for Scots pine and Norway spruce shows a moderate increase in defoliation of 4.3 and 3.8%, respectively. No trend was detected for deciduous (sub-) Mediterranean oaks. There was again a decrease in the number of observed damage symptoms compared to last year. As in previous years, the number of recorded damage symptoms per assessed tree was substantially higher for broadleaves than for conifers. Insects, abiotic causes, and fungi were the most common damage agent groups for all species, comprising altogether more than half of all damage records. Tree mortality increased again slightly in 2021, mainly due to abiotic factors.
Abstract
No abstract has been registered
Authors
Trygve S. AamlidAbstract
No abstract has been registered
Authors
Marian M. Weigel Lars Olav Brandsæter Therese With Berge Jukka Salonen Timo Lötjönen Bärbel GerowittAbstract
No abstract has been registered
Authors
Benjamin Allen Michele Dalponte Hans Ole Ørka Erik Næsset Stefano Puliti Rasmus Astrup Terje GobakkenAbstract
Numerous species of pathogenic wood decay fungi, including members of the genera Heterobasidion and Armillaria, exist in forests in the northern hemisphere. Detection of these fungi through field surveys is often difficult due to a lack of visual symptoms and is cost-prohibitive for most applications. Remotely sensed data can offer a lower-cost alternative for collecting information about vegetation health. This study used hyperspectral imagery collected from unmanned aerial vehicles (UAVs) to detect the presence of wood decay in Norway spruce (Picea abies L. Karst) at two sites in Norway. UAV-based sensors were tested as they offer flexibility and potential cost advantages for small landowners. Ground reference data regarding pathogenic wood decay were collected by harvest machine operators and field crews after harvest. Support vector machines were used to classify the presence of root, butt, and stem rot infection. Classification accuracies as high as 76% with a kappa value of 0.24 were obtained with 490-band hyperspectral imagery, while 29-band imagery provided a lower classification accuracy (~60%, kappa = 0.13).
Authors
Anna Birgitte MilfordAbstract
No abstract has been registered
Authors
Zhanjiang Pei Shujun Liu Zhangmu Jing Yi Zhang Jingtian Wang Jie Liu Yajing Wang Wenyang Guo Yeqing Li Lu Feng Hongjun Zhou Guihua Li Yongming Han Di Liu Junting PanAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Erling MeisingsetAbstract
No abstract has been registered