Ralf Rautenberger

Research Scientist

(+47) 482 10 194
ralf.rautenberger@nibio.no

Place
Bodø

Visiting address
Torggården, Kudalsveien 6, NO-8027 Bodø

To document

Abstract

The brown marine macroalga Alaria esculenta contains phlorotannins as polyphenolic compounds in its cell walls. This study aimed to understand their antioxidant effects on preserving the lipids in fillets of freshly-slaughtered farmed Atlantic salmon (Salmo salar). First, soluble phlorotannins were extracted from wild-grown population of A. esculenta in North Norway (Bodø) using solid/liquid extraction. A small-scale solid/liquid extraction (15 mg mL−1) with 70% acetone showed that 84% of total soluble phlorotannins (25.10 mg g−1 dry weight) were extracted after the first out of four extraction steps. In a large-scale extraction (3 mg 400 mL−1), the contents of soluble phlorotannins and the DPPH-based antioxidant capacities (measured as IC50) in 70% acetone- and water-based crude extracts were similar. Water is preferred extraction solvent for the following experiment because it complies with food safety standards, may minimise work procedures and is in accordance with the principles of Green Chemistry. Secondly, the antioxidant properties of the soluble phlorotannins were tested through incubating salmon fillets (Norwegian Quality Cuts) in water-based extracts. After six days of storage on ice, the peroxide value of Alaria-treated fillets was lower compared to the control (without Alaria-extract), while the p-anisidine and free fatty acid values remained unchanged. This indicates the phlorotannins’ inhibitory effect on the formation of primary rather than secondary lipid oxidation products. This study demonstrated that the antioxidant properties of the soluble phlorotannins extracted from A. esculenta using water can preserve the nutritional value of salmon fillets to extend the seafood’s shelf-life.

Abstract

During the cultivation of Ulva fenestrata in a land-based aquaculture system, the colonisation of the water tanks’ surfaces and eventually the macroalgal biomass by the biofouling diatom Fragilariopsis oceanica compromises the production process. Since germanium dioxide (GeO2) is an effective growth inhibitor of diatoms, this study aimed to understand how it affects the presence of F. oceanica and the photosynthesis and growth of U. fenestrata as a primary parameter contribution to the biomass production. A toxicological dose-response experiment showed that the diatom’s growth was inhibited at the low GeO2 concentration of 0.014 mg l−1. In contrast, the photosynthetic performances and growth rates of U. fenestrata remained unaffected under a wide GeO2 concentration range (0.022–2.235 mg l−1) in small- and large-scale experiments in 1-l glass beakers and 100-l Plexiglass water tanks, respectively. In the latter, the diatom density in the tanks was reduced by 40 %. The costs arising from the use of GeO2 can range between €2.35 and €8.35  kg−1 fresh weight of produced U. fenestrata biomass under growth conditions resulting in growth rates of 20 and 11.5 % d−1, respectively. GeO2 is an effective agent to control biofouling diatoms such as F. oceanica during the land-based biomass production of U. fenestrata.