Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2025

To document

Abstract

Aim: This study sets out to understand the variability in larval traits of dispersive life stages of a famous invader, the European shore crab Carcinus maenas, in its native distribution range. Location: North East Atlantic coast from the Norwegian Arctic to the southern European distribution limit of C. maenas in Southern Spain. Taxon: European shore crab Carcinus maenas (Crustacea, Decapoda). Methods: We quantified latitudinal patterns in larval body mass, elemental composition (C and N content), and thermal tolerance of the first larval stage. We collected crabs from four populations spanning 25° of latitude (Vigo in Northern Spain; Bergen, Trondheim, and Bodø in Norway) and reanalysed published and unpublished data of body mass and elemental composition of additional populations from Germany, Wales, France, and Southern Spain. Furthermore, we used two laboratory experiments to test the thermal tolerance limits of the first larval stage from Vigo and the Norwegian populations. In the first experiment, we reared larvae from hatching to Zoea II at seven temperatures (9°C–27°C) and from hatching to LT50 at 6°C. In the second experiment, we exposed freshly hatched larvae acutely to increasing or decreasing temperatures (up to 40°C and down to 3°C). Results: Across the entire European range, we found a substantial increase in dry mass and carbon and nitrogen content of freshly hatched larvae with latitude. Norwegian populations exhibited higher survival at 9°C than the Vigo population. Furthermore, LT50 at 6°C increased from South to North. All populations showed high survival in the range 12°C–24°C but low survival at 27°C.

Abstract

Urban agriculture has the potential to contribute to more sustainable cities, but its impacts are complex and varied. By implementing robust monitoring systems, cities can better understand the true effects of urban farming initiatives. This evidence can then inform smarter policies and more effective urban planning strategies.