Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Difenoconazole is a widely used triazole fungicide that has been frequently detected in the environment, but comprehensive study about its environmental fate and toxicity of potential transformation products (TPs) is still lacking. Here, laboratory experiments were conducted to investigate the degradation kinetics, pathways, and toxicity of transformation products of difenoconazole. 12, 4 and 4 TPs generated by photolysis, hydrolysis and soil degradation were identified via UHPLC-QTOF/MS and the UNIFI software. Four intermediates TP295, TP295A, TP354A and TP387A reported for the first time were confirmed by purchase or synthesis of their standards, and they were further quantified using UHPLC-MS/MS in all tested samples. The main transformation reactions observed for difenoconazole were oxidation, dechlorination and hydroxylation in the environment. ECOSAR prediction and laboratory tests showed that the acute toxicities of four novel TPs on Brachydanio rerio, Daphnia magna and Selenastrum capricornutum are substantially lower than that of difenoconazole, while all the TPs except for TP277C were predicted chronically very toxic to fish, which may pose a potential threat to aquatic ecosystems. The results are important for elucidating the environmental fate of difenoconazole and assessing the environmental risks, and further provide guidance for scientific and reasonable use.

To document

Abstract

Soft rot Pectobacteriaceae (SRP) are ubiquitous on earth as there are records of findings from all continents where host plants are grown. This chapter describes information on soft rot diseases on these continents. For some countries, detailed information is provided by local experts on the SRP present, their economic damage, and the management strategies applied for their control. The focus of the chapter is mainly on SRP as causative agents of potato blackleg, although in specific cases details are provided on SRP in other host plants. In Europe, the SRP cause important economic losses mainly on potato, with most species described in the literature being found. In Latin America significant losses are also reported due to potato diseases caused by various Dickeya and Pectobacterium species, while in Australia and Oceania, recent outbreaks of D. dianthicola in potato have resulted in high economic losses. In Asia, however, SRP cause economic losses mainly in vegetable crops other than potato, while in North America SRP cause diseases on a wide range of crops (including potato and ornamental plants) in both field and storage. In Africa SRP are only known to occur in 17 of the 54 African countries but where it is known, potato is the most affected crop.

Abstract

Simple Summary The bird cherry-oat aphid and the fungal plant pathogen causing stagonospora nodorum blotch (SNB) are common pests of wheat. Plants are under constant attack by multiple pests and diseases but there are limited studies on the interaction between several pests on wheat. We therefore conducted controlled greenhouse and laboratory experiments to determine how these pests affected each other on a wheat plant. We found that aphid feeding predisposed wheat to fungal disease, but that aphids preferred and reproduced better on leaves that had not been infected by the fungal pathogen. These results are important to understand the interactions between multiple pests on wheat and how to develop new control strategies in future integrated pest management (IPM). Abstract Wheat plants are under constant attack by multiple pests and diseases. Until now, there are no studies on the interaction between the aphid Rhopalosiphum padi and the plant pathogenic fungus Parastagonospora nodorum causal agent of septoria nodorum blotch (SNB) on wheat. Controlled experiments were conducted to determine: (i) The preference and reproduction of aphids on P. nodorum inoculated and non-inoculated wheat plants and (ii) the effect of prior aphid infestation of wheat plants on SNB development. The preference and reproduction of aphids was determined by releasing female aphids on P. nodorum inoculated (SNB+) and non-inoculated (SNB−) wheat leaves. The effect of prior aphid infestation of wheat plants on SNB development was determined by inoculating P. nodorum on aphid-infested (Aphid+) and aphid free (Aphid−) wheat plants. Higher numbers of aphids moved to and settled on the healthy (SNB−) leaves than inoculated (SNB+) leaves, and reproduction was significantly higher on SNB− leaves than on SNB+ leaves. Aphid infestation of wheat plants predisposed the plants to P. nodorum infection and colonization. These results are important to understand the interactions between multiple pests in wheat and hence how to develop new strategies in future integrated pest management (IPM).

To document

Abstract

In addition to the rapidly expanding field of using microalgae for food and feed, microalgae represent a tremendous potential for new bioactive compounds with health-promoting effects. One field where new therapeutics is needed is cancer therapy. As cancer therapy often cause severe side effects and loose effect due to development of drug resistance, new therapeutic agents are needed. Treating cancer by modulating the immune response using peptides has led to unprecedented responses in patients. In this review, we want to elucidate the potential for microalgae as a source of new peptides for possible use in cancer management. Among the limited studies on anti-cancer effects of peptides, positive results were found in a total of six different forms of cancer. The majority of studies have been performed with different strains of Chlorella, but effects have also been found using peptides from other species. This is also the case for peptides with immunomodulating effects and peptides with other health-promoting effects (e.g., role in cardiovascular diseases). However, the active peptide sequence has been determined in only half of the studies. In many cases, the microalga strain and the cultivation conditions used for producing the algae have not been reported. The low number of species that have been explored, as opposed to the large number of species available, is a clear indication that the potential for new discoveries is large. Additionally, the availability and cost-effectiveness of microalgae make them attractive in the search for bioactive peptides to prevent cancer.

Abstract

The knowledge- and technology platform developed within the ALGAE TO FUTURE project aims to lay a foundation for an industrial microalgae production in Norway. In the project ALGAE TO FUTURE, funded by the Norwegian Research Council 2017-2021, with a consortium of 20 national and international research and industry partners, research and product development of microalgae biomass have been approached from multiple angles merging multiple research fields. The focus of the research has been bioprocess developments linked to lipids, carbohydrates and proteins, where species selection and cultivation conditions are used to obtain microalgae biomass with specific nutrient composition targeting specific products. We have chosen to target the development of three example products, namely 1) bread using algae biomass with high protein content, 2) beer using algae biomass with high content of starch and starch-degrading enzymes, and 3) fish feed using algae biomass with high PUFA content. These case studies have been chosen in order to demonstrate the use of algal biomass from various algae species with highly different nutrient composition suitable for different products. We have in this project studied the whole process line from small scale microalgae cultivation technology, upscaling cultivation, processing of algae biomass, shelf life, food/ feed product development, food safety and consumers attitudes. Some highlights from the four-year project period will be presented. Results from these activities may contribute towards the use of microalgae as part of the future Norwegian bioeconomy.

To document

Abstract

Oomycetes are spore-forming eukaryotic microbes responsible for infections in animal and plant species worldwide, posing a threat to natural ecosystems, biodiversity and food security. Genomics and transcriptomics approaches, together with host interaction studies, give promising results towards better understanding of the infection mechanisms in oomycetes and their general biology. Significant development and progress in oomycetes genomic studies have been achieved over the past decades but further understanding of molecular processes, gene regulations and infection mechanisms are still needed. The use of molecular tools such as CRISPR/Cas and RNAi helped elucidate some of the molecular processes involved in host invasion and infection both in plant and animal pathogenic oomycetes. These methods provide an opportunity for accurate and detailed functional analysis involving various fields of studies such as genomics, epigenomics, proteomics, and interactomics. Functional gene characterisation is essential for filling the knowledge gaps in dynamic biological processes. However, every method has both advantages and limitations that should be considered before choosing the best method for investigating a particular research question. Here we review transformation systems, gene silencing and gene editing techniques in oomycetes, how they function, in which species and what are their main advantages and disadvantages.