Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Rapid methods allowing for non-destructive crop monitoring are imperative for accurate in-season nitrogen (N) status assessment and precision N management. The objectives of this paper were to (1) compare the performance of a leaf fluorescence sensor Dualex 4 and an active canopy reflectance sensor Crop Circle ACS-430 for estimating maize (Zea mays L.) N status indicators across growth stages; (2) evaluate the potential of N status prediction across growth stages using the reflectance parameters acquired from the canopy sensor at an early growth stage; and, (3) investigate the prospect of combining the active canopy sensor and leaf fluorescence sensor data to estimate N nutrition index (NNI) indirectly using a general model across growth stages. The results indicated that data from both sensors were closely related to NNI across stages. However, using the direct NNI estimation method, among the tested indices, only the N balance index (NBI) could diagnose N status satisfactorily, based on the Kappa statistics. The effect of growth stages on proximal sensing was reduced by incorporating the information of days after sowing. It was found that the leaf fluorescence sensor performed relatively better in estimating plant N concentration whereas the canopy reflectance sensor performed better in aboveground biomass estimation. Their combination significantly improved the reliability of N diagnosis, including NNI prediction. In addition, the study confirmed that N status can be assessed by predicting aboveground biomass at the later stages using the canopy reflectance measurements at an early stage. Furthermore, the integrated NBI was verified to be a more robust and sensitive N status indicator than the chlorophyll concentration index. It is concluded that combining active canopy sensor data, of an early growth stage (e.g. V8), with leaf fluorescence sensor data, modified using days after sowing, can improve the accuracy of corn N status diagnosis across growth stages.

To document

Abstract

The INTENSE project, supported by the EU Era-Net Facce Surplus, aimed at increasing crop production on marginal land, including those with contaminated soils. A field trial was set up at a former wood preservation site to phytomanage a Cu/PAH-contaminated sandy soil. The novelty was to assess the influence of five organic amendments differing in their composition and production process, i.e. solid fractions before and after biodigestion of pig manure, compost and compost pellets (produced from spent mushroom substrate, biogas digestate and straw), and greenwaste compost, on Cu availability, soil properties, nutrient supply, and plant growth. Organic amendments were incorporated into the soil at 2.3% and 5% soil w/w. Total soil Cu varied from 179 to 1520 mg kg−1, and 1 M NH4NO3-extractable soil Cu ranged from 4.7 to 104 mg kg−1 across the 25 plots. Spring barley (Hordeum vulgare cv. Ella) was cultivated in plots. Changes in physico-chemical soil properties, shoot DW yield, shoot ionome, and shoot Cu uptake depending on extractable soil Cu and the soil treatments are reported. Shoot Cu concentration varied from 45 ± 24 to 140 ± 193 mg kg DW−1 and generally increased with extractable soil Cu. Shoot DW yield, shoot Cu concentration, and shoot Cu uptake of barley plants did not significantly differ across the soil treatments in year 1. Based on soil and plant parameters, the effects of the compost and pig manure treatments were globally discriminated from those of the untreated, greenwaste compost and digested pig manure treatments. Compost and its pellets at the 5% addition rate promoted soil functions related to primary production, water purification, and soil fertility, and the soil quality index.

To document

Abstract

Roadsides, in particular those being species-rich and of conservation value, are considered to improve landscape permeability by providing corridors among habitat patches and by facilitating species' dispersal. However, little is known about the potential connectivity offered by such high-value roadsides. Using circuit theory, we modelled connectivity provided by high-value roadsides in landscapes with low or high permeability in south-central Sweden, with ‘permeability’ being measured by the area of semi-natural grasslands. We modelled structural connectivity and, for habitat generalists and specialists, potential functional connectivity focusing on butterflies. We further assessed in which landscapes grassland connectivity is best enhanced through measures for expanding the area of high-value roadsides. Structural connectivity provided by high-value roadsides resulted in similar patterns to those of a functional approach, in which we modelled habitat generalists. In landscapes with low permeability, all target species showed higher movements within compared to between grasslands using high-value roadsides. In landscapes with high permeability, grassland generalists and specialists showed the same patterns, whereas for habitat generalists, connectivity provided by high-value roadsides and grasslands was similar. Increasing the ratio of high-value roadsides can thus enhance structural and functional connectivity in landscapes with low permeability. In contrast, in landscapes with high permeability, roadsides only supported movement of specialised species. Continuous segments of high-value roadsides are most efficient to increase connectivity for specialists, whereas generalists can utilize also short segments of high-value roadsides acting as stepping-stones. Thus, land management should focus on the preservation and restoration of existing semi-natural grasslands. Management for enhancing grassland connectivity through high-value roadsides should aim at maintaining and creating high-value roadside vegetation, preferably in long continuous segments, especially in landscapes with low permeability.

To document

Abstract

Source at <a href=https://vkm.no/>https://vkm.no/</a>