Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document See dataset

Abstract

Arctic tundra vegetation is affected by rapid climatic change and fluctuating herbivore population sizes. Broad-billed geese, after their arrival in spring, feed intensively on belowground rhizomes, thereby disturbing soil, mosses, and vascular plant vegetation. Understanding of how springtime snowmelt patterns drive goose behavior is thus key to better predict the state of Arctic tundra ecosystems. Here, we analyzed how snowmelt progression affected springtime habitat selection and vegetation disturbance by pink-footed geese (Anser brachyrhynchus) in Svalbard during 2019. Our analysis, based on GPS telemetry data and field observations of geese, plot-based assessments of signs of vegetation disturbance, and drone and satellite images, covered two spatial scales (fine scale: extent 0.3 km2, resolution 5 cm; valley scale: extent 30 km2, resolution 10 m). We show that pink-footed goose habitat selection and signs of vegetation disturbance were correlated during the spring pre-breeding period; disturbances were most prevalent in the moss tundra vegetation class and areas free from snow early in the season. The results were consistent across the spatial scales and methods (GPS telemetry and field observations). We estimated that 23.4% of moss tundra and 11.2% of dwarf-shrub heath vegetation in the valley showed signs of disturbance by pink-footed geese during the study period. This study demonstrates that aerial imagery and telemetry can provide data to detect disturbance hotspots caused by pink-footed geese. Our study provides empirical evidence to general notions about implications of climate change and snow season changes that include increased variability in precipitation.

To document

Abstract

Renewable energy in the form of biogas can be produced by anaerobic digestion (AD) of animal manure. However, there is still a lack of knowledge on the long-term effects of AD-treated manure on soil characteristics and crop productivity, compared with untreated manure. A field experiment was established in a perennial grass-clover ley in 2011 to study the effects on important soil and crop characteristics when the slurry from a herd of organically managed dairy cows is anaerobically digested. While the rate of manure application affected soil concentrations of extractable nutrients and pH, these variables were unaffected by AD. Soil organic matter (SOM) concentrations decreased in all plots and faster on the plots with high intrinsic SOM. The decrease was similar with application of untreated (non-digested) slurry (US) and anaerobically digested slurry (ADS), and it was not affected by application rates. The general decline may be explained by the initial high SOM content, the long-term effect of drainage, and higher temperatures with climatic change. US and ADS gave similar yields of grass-clover ley (2 cuts/year) and green fodder, on average 0.79 and 0.40 kg DM m−2, respectively. Clover yield was similar in manured treatments and the non-fertilized control. With respect to crop yields and chemical soil characteristics, long-term (10 years) effects of AD in an organic dairy cow farming system seem to be minor. The benefits of extracting energy from the slurry did not compromise grassland productivity or soil quality in the long term.

To document

Abstract

Almost 95% of the area in Norway is wilderness and 38% of the land area is covered by woods. These areas are abundant in valuable renewable resources, including wild berries. In our neighbouring countries, Sweden and Finland, wild berries are already a big industry. At the same time, on the market the Norwegian wild berries are almost non-existent and berries are left unexploited. Lingonberry (Vaccinium vitis-idaea) is one of the most abundant and economically important wild berries in the Nordic countries. Nevertheless, lingonberry has a large untapped potential due to its unique health effects and potential for increased value creation. It is estimated that 111,500 t of lingonberry are produced in the Norwegian woods. Norway is a long and diverse country with a range of climatic conditions. Adaptations to different conditions can give differences in both yield and quality of wild berries. Yields vary enormously from year to year and among different locations. A steady supply, predictable volumes and high quality are vital for successful commercialization of wild berries. To increase the utilization of berries, there is a need for increased knowledge regarding availability and quality variation of the berries. In addition, the Norwegian market suffers from high labour costs and cannot compete in product price. Innovative solutions and new knowledge on quality aspects can open possibilities for value creation. Toward achieving this goal, we have created a project called “WildBerries”, the main objective of which is to produce research-based knowledge that will create the basis for increased commercial utilization of Norwegian wild berries.

Abstract

Temperature and humidity were measured in 28 vegetable stores and corelated to quality of stored vegetable through two storage seasons. The vegetables swede, carrot and celeriac were grown at one site within each of the four regions in Norway ROG, MID, INN and OSL, respectively. After harvesting, the vegetables were weighed and visually assessed for any injuries or diseases and stored in different stores within the same region as grown. Four bags dug down in four storage bins in each store. Temperature and humidity were logged in each bag as well as on the top of each bin and on wall of the storage. In general, we found significant differences in the storage quality between the different storages as well as between regions. Correlating data on quality with temperature data shows for carrot a tendency to an increase in the proportion of fresh roots and reduction in incidence of tip-rot by an increased average temperature during the first two weeks of storage. This corresponds to results from tested various wound healing treatments. An increase in accumulated temperature during the storage period showed a tendency to increase the emergence of tip-rot and reduce the proportion of fresh roots. For celeriac, the effect of temperature varied between years, possibly due to a large difference in quality in the two test years, and it was difficult to draw any conclusion. In swede, the results suggest that a decrease in temperature in the first two weeks of storage increased the risk of the symptom shown as black veins in the phloem. Nutrient status was found to be a possibly predisposing factor for reduced storage quality in celeriac. Balance of boron (B) to calcium (Ca) and zinc (Zn) were studied in two sites. Highest incidence of brown spots and lowest proportion of fresh roots following storage was found in celeriac with the lowest Ca/B ratio in leaves, lowest content of Zn in the leaves and roots and lowest soil pH.