Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

Til dokument

Sammendrag

It is expected that European Boreal and Temperate forests will be greatly affected by climate change, causing natural disturbances to increase in frequency and severity. To detangle how, through forest management, we can make forests less vulnerable to the impact of natural disturbances, we need to include the risks of such disturbances in our decision-making tools. The present review investigates: i) how the most important forestry-related natural disturbances are linked to climate change, and ii) different modelling approaches that assess the risks of natural disturbances and their applicability for large-scale forest management planning. Global warming will decrease frozen soil periods, which increases root rot, snow, ice and wind damage, cascading into an increment of bark beetle damage. Central Europe will experience a decrease in precipitation and increase in temperature, which lowers tree defenses against bark beetles and increases root rot infestations. Ice and wet snow damages are expected to increase in Northern Boreal forests, and to reduce in Temperate and Southern Boreal forests. However, lack of snow cover may increase cases of frost-damaged seedlings. The increased temperatures and drought periods, together with a fuel increment from other disturbances, likely enhance wildfire risk, especially for Temperate forests. For the review of European modelling approaches, thirty-nine disturbance models were assessed and categorized according to their required input variables and to the models’ outputs. Probability models are usually common for all disturbance model approaches, however, models that predict disturbance effects seem to be scarce.

Til dokument

Sammendrag

Prey species may display anti-predatory behavior, i.e., flight, increased vigilance, and decreased feeding, in response to the true presence of a predator or to the implied presence of a predator through, e.g., acoustic cues. In this study, we investigated the anti-predatory reactions of moose (Alces alces) to acoustic stimuli related to hunting, at saltlick stones, a known attractant. In before-during-after-control-impact experiments, we compared the behavioral responses of individuals to: (i) two hunting-related acoustic stimuli—hunting dog barking and human speaking; (ii) nonpredatory acoustic stimuli—bird sounds and; and (iii) no acoustic stimulus (control). We asked: (1) How does the probability of moose leaving the site differ depending on the stimulus they are exposed to?; (2) What affect do the acoustic stimuli have on the amount of time moose spend vigilant, feeding, or away from the site?; and (3) What affect do the stimuli have on the time between events at a site? We found that when exposed to the human stimulus, moose left the sites in 75% of the events, which was significantly more often compared to the dog (39%), bird (24%), or silent (11%) events. If moose did not leave the site, they spent more time vigilant, and less time feeding, particularly when exposed to a dog or human stimulus. Furthermore, moose spent the most time away from the site and took the longest to visit the site again after a human stimulus. Moose were also more likely to leave the site when exposed to the bird stimulus than during silent controls. Those that remained spent more time vigilant, but their behaviors returned to baseline after the bird stimulus ended. These findings suggest that acoustic stimuli can be used to modify the behavior of moose; however, reactions towards presumably threatening and nonthreatening stimuli were not as distinct as we had expected.

Til dokument

Sammendrag

The categories and concepts in the existing official land-use maps have been under improvements over recent years; however, this study from Nordland, northern Norway, shows that they continue to pose several dilemmas when aiming to better capture the impacts of multiple land uses on reindeer herding. While these developments have done much to better communicate the presence of reindeer herding to developers and planners, there remain significant challenges to achieve best practices. In particular, the confluence of multiple landscape features, for instance, roads, farmland, ecoregions, tenure, pastures, tourism paths and cabins, may have interactions that create cumulative impacts that do not “add up” neatly across map layers. Migration routes, herding routes, and resting areas have been introduced in these maps. In collaboration with reindeer herders, this article analyses how to enrich mapping practices by for example including bottlenecks, parallel to increased attention to influence zones and avoidance zones, as important emergent impacts of multiple interacting features of the landscape. Our research reveals how local knowledge developed by herders through their “presence in the landscape” is better capable of accounting for interactions and cumulative dimensions of landscape features. Through our participatory mapping approach with Sámi reindeer herders, we focus on ways of combining reindeer herders’ knowledge and GIS maps and demonstrate the potential in collaborative work between herders and policymakers in generating a richer understanding of land-use change. We conclude that the practical knowledge of people inhabiting and living with the landscape and its changing character generates a rich understanding of cumulative impacts and can be harnessed for improved land-use mapping and multi-level governance.

Til dokument

Sammendrag

Norway, Ecosystem assessment, Ecosystem condition, Ecosystem state, System for Assessment of Ecological Condition, Norge, Økosystemvurdering, Økosystemtilstand, Økologisk tilstand, System for vurdering av økologisk tilstand, Fagpanelmeto-den