Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Key message This study compares the measured radial variation in wood stiffness, strength, and density of noble fir, Norway spruce, western hemlock, and western red cedar by developing mixed-effects models for each property using age as the explanatory variable. These models could be used to simulate the effect of rotation length and species choice on sawn wood properties. Context Timber production in Great Britain relies primarily on Sitka spruce. The use of multiple species is desirable to mitigate against biotic and abiotic risks posed to a single species. When considering alternative species, quantifying and modeling radial variation in wood properties is important to determine the potential for sawn timber production at a given rotation length. Aims To build empirical models for the radial variation in wood properties that can account for species. Methods Clear-wood samples were produced along radial transects in trees from four conifer species: Abies procera Rehder, Picea abies (L.) Karst, Tsuga heterophylla (Raf.) Sarg., Thuja plicata Donn. ex D.Don. Modulus of Elasticity, Modulus of Rupture, and density were measured on each species according to established standards. Mixed-effects models were built using ring numbers from the pith and species as explanatory variables. Results The same model forms could be used across the four species. Nonlinear models were developed for the Modulus of Elasticity and density. For the Modulus of Rupture, a linear model was most appropriate. The effect of species in the models was significant. Conclusion At similar rotation lengths, noble fir, Norway spruce, and western hemlock can produce timber with comparable properties to Sitka spruce. Overall, western red cedar would have worse properties for structural use. Keywords MOE, MOR, Radial variation, Tree growth, Alternative species

Abstract

Normal log lengths in Norway are 3–6 m (NL), but occasionally there is a demand for short timber with a 2.5 m log length (ST). There are concerns that ST could reduce the forwarders' productivity. Six type stands were created based on harvester data. Different assortment distributions, conditions, and forwarders were simulated in each type stand. It was found that an additional ST assortment almost always decreased productivity (from –15.5 to +4%). Increased forwarding distance (m), more difficult driving conditions, and increased log concentration [m3·(100 m strip road)–1] decreased the productivity difference between sites with ST and NL and sites with only NL. Increased forwarder size increased the productivity difference between sites with ST and NL and sites with only NL. It is possible to load two stacks of ST on some forwarders. Such loading was more productive than loading one stack on longer forwarding distances, while the opposite was the case on short distances. However, loading two stacks of ST can lead to overloading.

To document

Abstract

Thinning treatments along with the establishment of mixed forest stands have been put forward as possible adaptation strategies to cope with climate change, although the effectiveness of combining these two measures has scarcely been studied and may vary depending on stand conditions and the thinning regime employed. The aim of this study was to better understand the effect of commercial thinning and of the different growth behavior of two coexisting species on their inter- and intra-annual cumulative radial increment patterns. For this purpose, we studied radial increment in a Scots pine-Pyrenean oak (Pinus sylvestris L.-Quercus pyrenaica Willd.) Mediterranean mixed forest in north-west Spain over two climatically contrasting years (2016–2017). The data came from a thinning trial consisting of a randomized latin square design with a control and two commercial thinning treatments from below; one moderate and the other heavy, removing 25% and 50 % of initial basal area, respectively, of both species. The radial increment was analyzed based on bi-weekly readings from band dendrometers installed on 90 oak and pine trees. A non-linear mixed model based on double-Richards curve was fitted to explore the differences between thinning treatments and species response in the intra-annual cumulative radial increment patterns. Inter-annual basal area increments for each species at stand level were quantified by aggregating the tree estimates obtained from the model fitted in the first step. Tree and stand level growth were greater in Scots pine, which also showed a greater growth response to early spring droughts than the Pyrenean oak. Heavy thinning increased radial increment in trees of both species at the expense of decreased total stand basal area. At species level, basal area growth in Scots pine decreased through thinning, whereas for Pyrenean oak, the heavy thinning intensity resulted in the same basal area growth as the control. Thus, heavy thinning induced a trade-off between total stand growth and tree-level response to climatic conditions for Scots pine but with no loss in productivity in the case of the Pyrenean oak. Hence, heavy thinning may be an appropriate measure to attain productive stability of the oak coppice in the studied mixed forest as well as to adapt tree growth to future droughts associated with climate change.

To document

Abstract

European countries have national sectoral polices to regulate and promote the provision of a wide range of forest ecosystems services (FES). However, potential incoherencies among these policies can negatively affect the efficient provision of FES. In this work, we evaluated the coherence among three national policies from Germany and their ability to effectively provide FES in the future: the Forest Strategy 2020 (FS), the National Strategy on Biological Diversity (BDS), and the German National Policy Strategy on Bioeconomy (BES). Using forest inventory data from the Federal State of Bavaria, we simulated a range of forest management options under three climate trajectories for 100 years into the future (2012–2112). Then, with multi-objective optimization, we translated each policy into a specific scenario and identified the best combination of management regimes that maximizes the targets defined in each policy scenario. The three policies were vague in the definition of FES. The FS was the most comprehensive policy aiming for a higher degree of multifunctionality, whereas the BES and BDS focused on less FES. The FS and the BDS showed the highest coherence, while the BES showed a stronger focus on timber production. As a result, the optimal management programs of FS and BDS showed high integration, with a dominance of Continuous Cover Forestry (CCF), and certain shares of set asides. Climate change led to an increase of set aside areas due to increased productivity. In the BES, the share of land among management regimes was strongly segregated between CCF and rotation forestry. Our policy coherence analysis showed that achieving a multifunctional provision of FES requires policy coherence, fostering a diverse management of the landscape that mainly takes advantage of integrative management, like CCF, but also segregates important parts of the landscape for intensive use and set asides. Nevertheless, the current high standing volumes in Bavaria will pose an additional risk to implement such management.