Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2010

Abstract

Four forest management systems, clear cutting, mountain forest selective cutting (50-90 % of volume removed), group system and single tree selection system (20-50 % of volume removed) were compared in two Norway spruce mountain forest stands. The sites are located 650 m.a.s.l., which is about 100 meter below the alpine tree line in this region. The background for this experiment was that the forest owner wanted to examine alternatives to clear cutting with silvicultural methods where some trees were left in the stand to protect regenerating against frost, to maintain biodiversity, and for recreational reasons in such areas close to the tree line. In twenty 400 m2 systematically sampled plots we assessed or measured vegetation type, regeneration, diameter of all trees > 2.5 dbh, tree heights, annual growth from increment cores, tree quality, old stumps and windthrows. In addition, time studies of the four harvesting methods were performed close to each other in the area. The following mean values were estimated in the two stands before cutting: Area 7 hectares, volume 170 m3/ha, mean diameter 23 cm, mean height 18 m, stems 550/ha, seedlings 150/ha, productivity 3 m3/ha/yr. The diameter distribution of the two stands was almost similar to a reverse J-shaped curve, but a larger amount of trees in some medium and large diameter classes were observed. However, most of the 230 m3 harvested trees were medium and large sized. Annual increment indicated growth reactions 3 years after harvesting. The operational costs were estimated according to time studies of the harvesting and extraction of 580 trees. Analyses of net present value, where bare land value and all future revenues and expenses were estimated and discounted backwards to the harvesting year, indicates less profitability for group selection and selection system than clear cutting and mountain forest selective cutting.

Abstract

In European forests, standing stocks are currently higher than ever during the last decades, in part due to reduced logging or the abandonment of agricultural land. However, data from intensive monitoring plots reveal an increased growth even without direct human intervention.We used a set of 363 plots from 16 European countries to investigate the influence of environmental factors on forest growth: nitrogen, sulphur and acid deposition, temperature, precipitation and drought, for Norway spruce, Scots pine, common beech and European as well as sessile oak.We used existing information on site productivity, stand age and stand density to estimate expected growth. Relative tree growth, i.e., the ratio between actual growth within a five-year period and expected growth, was then related to environmental factors in a stepwise multiple regression.The results consistently indicate a fertilizing effect from nitrogen deposition, with roughly one percent increase in site productivity per kg of nitrogen deposition per ha and year, or 20 kg C fixation per kg N deposition. This was most pronounced for plots having soil C/N ratios above 25. We also found a positive albeit less clear relationship between relative growth and summer temperatures.From the study, we cannot conclude on any detrimental effects on growth from sulphur and acid deposition or from drought periods. A very recent study from the U.S., comprising 4800 plots and 24 tree species, confirms our results. However, we also show that the magnitude of N deposition effects on global forest C balance is currently a highly controversial matter, and comment on this debate. http://www.cef-cfr.ca/uploads/Colloque/Programme10_5.pdf

Abstract

Understanding the feedback between terrestrial biosphere processes and meteorological drivers is crucial to ecosystem research as well as management. For example, remote sensing of the activity of vegetation in relation to environmental conditions provides an invaluable basis for investigating the spatiotemporal dynamics and patterns of variability. We investigate the Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) using SeaWiFS satellite observations from 1998 to 2005 and ancillary meteorological variables from the CRU-PIK dataset. To what extent do precipitation and temperature dominate the terrestrial photosynthetic activity on monthly to interannual time scales? A spectral decomposition using Singular System Analysis leads to a global ‘classification’ of the terrestrial biosphere according to prevalent time-scale dependent dynamics of fAPAR and its relation to the meteorology. A complexity analysis and a combined subsignal extraction and dimensionality reduction reveals a series of dominant geographical gradients, separately for different time scales. Here, we differentiate between three time scales: on short time scales (compared to the annual cycle), variations in fAPAR coincide with corresponding precipitation dynamics. At the annual scale, which explains around 50% of the fAPAR variability as a global average, patterns largely resemble the biomes of the world as mapped by biogeographic methods.At longer time scales, spatially coherent patterns emerge which are induced by precipitation and temperature fluctuations combined. However, we can also identify regions where the variability of fAPAR on specific time scales cannot be traced back to climate and is apparently shaped by other geoecological or anthropogenic drivers. http://uregina.ca/prairies/assets/Prairie_Summit_Final_Program.pdf

Abstract

Determining the feedbacks between terrestrial biosphere processes and the meteorological drivers (here precipitation and temperature) is crucial to ecosystem research. In this context, the continuous monitoring of the earth surface provides an invaluable basis for investigating the spatiotemporal dynamics in the activity of vegetation in relation to environmental conditions. Here, we seek to identify which patterns of variability in the meteorological drivers dominate the terrestrial photosynthetic activity from monthly to interannual time scales (resp. fluctuation frequencies). We investigate the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) using SeaWiFS observations from 1998 to 2005 and ancillary meteorological variables. A spectralanalysis leads to a global `classification` of the terrestrial biosphere according to prevalent scale dependent dynamics of fAPAR and its relation to the meteorology. A combined subsignal extraction and dimensionality reduction reveals a series of dominant geographical gradients on specific time scales. E.g. we uncover spatially coherent patterns at low frequencies and show where these are induced by precipitation or temperature fluctuations. We also show where high frequency variations (relative to the annual cycle) in fAPAR coincide with corresponding precipitation dynamics. However, we can also identify regions where the variability of fAPAR on specific time scales cannot be traced back to climate and is apparently shaped by other geoecological or anthropogenic drivers. http://www.terrabites.net/fileadmin/user_upload/terrabites/PDFs/Programme_Book_TERRABITES.pdf

Abstract

The utilization history of the Lange Bramke catchment and the northern Harz mountains is dominated by ore mining. Historical documents were used to provide ample evidence that forestry and water utilization were managed according to administrative goals in a largely centralized manner. However, the perception of the landscape and its function and purpose have changed significantly over the centuries. In particular, the distinction between renewable (such as forests) and non-renewable resources (such as ore deposits) is a rather modern one, as is the principle of sustainability. This change in perception is apparent from the type of maps used, the different conflicts on property and exploitation rights, and the request for quantitative inventories of resources, appearing only quite late in the mining history. The remnants of smelters and charcoal production still demonstrate the importance of historical land use for proper interpretation of monitoring data.

Abstract

The Lange Bramke catchment has been investigated as a monitored catchment for 60 years. However, its utilization history even dates back to medieval times, and is well documented in part. The intense interplay between ore mining, forestry, and water resources exploitation left remains such as scoriae piles and modified forest growth, e.g. due to local pollution at smelter locations. It is demonstrated that considering local land use history is important for a proper understanding and interpretation of modern monitoring data. A theoretical framework is proposed for the integration of the two data sources. This requires a joint approach combining two modelling paradigms, the functional one dominating in current ecosystem research, and an interactive one which best characterizes the human–environment relationship in historic times.

Abstract

The Pasvik River valley is the easternmost part of Norway, and borders to Finland and Russia. In Norway it is known for its wilderness and taiga forests. During the 1960-1970s most of the mature pine forests were harvested, and large areas of pine stands have been naturally regenerated. In addition, large areas are covered with birch. The Pasvik River valley and the adjoining areas are therefore important both as an area for growing timber resources and for recreation. However, these areas have also been exposed to air pollution from Russian smelting industry since the 1930s. In addition to sulphur dioxide, emissions consist of various heavy metals which contaminate the surroundings. The main pollution source is the huge nickel plant in the Russian city Nikel, located only 10 km from the Norwegian border. For a long time there was general concern for the quality of the forest ecosystems in these areas. This concern accelerated in the mid-1980s.