Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

2016

Abstract

Knowledge of hydrological processes and water balance elements are important for climate adaptive water management as well as for introducing mitigation measures aiming to improve surface water quality. Mathematical models have the potential to estimate changes in hydrological processes under changing climatic or land use conditions. These models, indeed, need careful calibration and testing before being applied in decision making. The aim of this study was to compare the capability of five different hydrological models to predict the runoff and the soil water balance elements of a small catchment in Norway. The models were harmonised and calibrated against the same data set. In overall, a good agreement between the measured and simulated runoff was obtained for the different models when integrating the results over a week or longer periods. Model simulations indicate that forest appears to be very important for the water balance in the catchment, and that there is a lack of information on land use specific water balance elements. We concluded that joint application of hydrological models serves as a good background for ensemble modelling of water transport processes within a catchment and can highlight the uncertainty of models forecast.

Abstract

Norwegian constructed wetlands (CWs) that treat domestic wastewater are classified as horizontal subsurface flow constructed wetlands (HSFCWs). Over the years of continuous performance, the HSFCWs operating under cold climate conditions have shown a high and stable treatment efficiency with regard to the removal of organic matter (>90 % BOD), nutrients (>50 % N and >90 % P) and microbes (>99 % bacteria). The majority of Norwegian HSFCWs are categorised as small (<50 pe) on-site, decentralised wastewater treatment systems. The Norwegian systems consist of three fundamental elements: a septic tank, a pre-filter (i.e. an aerobic vertical flow biofilter) and a horizontal flow saturated filter/wetland bed. The first, primary treatment step begins in the septic tank from which effluents are pre-treated in the second step occurring in the pre-filter/biofilter section and further in the third, final step taking place in the filter bed/HSFCW. The first and third treatment steps are quite common in systems with CWs, but the pre-treatment in biofilter(s) is mainly known from Norway. The main purpose of using the pre-treatment phase is to supply air during the cold season, to enhance nitrification processes, and to reduce the load of organic matter before entering the filter/wetland bed. If constructed and maintained correctly, the biofilters alone can remove 90 % BOD and 40 % N. Various filter/CW beds have been introduced for treatment of domestic wastewater (as complete or source-separated streams) in Norway, but the most common feature is the use of specific filter media for high phosphorus (P) removal. A few Norwegian municipalities also have limits with respect to nitrogen (N) discharge, but the majority of municipalities use 1.0 mg P/l as the discharge limit for small wastewater treatment systems. This particular limit affects the P retention lifetime of the filter media, which varies from system to system depending on the filter media applied, the type of wastewater treated, and the system design and loading rates. An estimated lifetime of filter media with regard to P removal is approximately 15–18 years for a filter/CW bed of a single household. After completing the lifetime, the filter media is excavated and replaced with new/fresh materials, allowing the system to operate effectively for another lifespan. Since the exploited media are P-rich materials, the main intention is their reuse in a safe and hygienic way, in which P could be further utilised. Therefore, the Norwegian systems can represent a complex technology combining a sustainable technique of domestic wastewater treatment and a bio-economical option for filter media reuse. This is a quite challenging goal for reclamation and recycling of P from wastewater. Thus, there are some scenarios of reusing the P-rich filter media as a complementary P fertiliser, a soil amendment or a conditioner, provided the quality is acceptable for utilisation in agriculture. Alternatively, the filter media could be reused in some engineering projects, e.g. green roof technology, road screening or construction of embankments, if the quality allows application in the environment. The core aspect of the reuse options is the appropriate quality of the filter media. As for the theoretical assumption, it should not be risky to reuse the P-rich media in agriculture. In practice, however, the media must be proven safe for human and environmental health prior to introducing into the environment.

Abstract

Water quality problems in Norway are caused mainly by high phosphorus (P) inputs from catchment areas. Multiple pollution sources contributes to P inputs into watercourses, and the two main sources in rural areas are agricultural runoff and discharge from on-site wastewater treatment systems (OWTSs). To reduce these inputs, Constructed wetlands (CWs) treating catchment runoff have been implemented in Norway since early 1990s. These CWs have been proven effective as supplements to agricultural best management practices for water quality improvements and therefore there are more than 1000 CWs established in Norway at present. This study aims to present some overall data on the present status of CWs treating catchment runoff in Norway, and in particular recent results of source tracking and retention of sediments and total phosphorus (TP) in a model, full-scale, long-term operated CW, which in practice treats runoff from a typical rural catchment with pollution from both point and diffuse sources. Nutrient contributions from agricultural runoff and OWTSs have been quantified in eight catchments, while the source tracking and retention of sediments and P has been studied in the model CW. P runoff in the catchments was largely affected by precipitation and runoff situation, and varied both throughout the year (every single year) and from one year to another. Annual TP contribution that origins from OWTSs was in general limited, and only 1 % in the catchment of the model CW. Monthly contribution, however, was higher than 30 % during warm/dry season, and cold months with frost season. For the purpose of source tracking study, faecal indicator bacteria (reported in terms of Escherichia coli - E. coli) and host-specific 16S rRNA gene markers Bacteroidales have been applied. High E.coli concentrations were well associated with high TP inputs into waterbodies during dry or/and cold season with little or no agriculture runoff, and further microbial source tracking (MST) tests proved human contribution. There are considerable variations in retention of sediments and TP in the CW between the years, and the annual yearly retention was about 38 % and 16 %, respectively. During the study period, the average monthly retention of sediments and TP was 54 % and 32 %, respectively. E. coli concentrations were also reduced in water passing the CW. The study confirmed that runoff from agricultural areas is the main P source in watercourses, however, discharges from OWTS can also be of great importance for the water quality, especially during warm/dry- and cold/frosty periods. Small CWs treating catchment runoff contribute substantially to the reduction of sediments, TP and faecal indicator bacteria transport into water recipients.