Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2004

Abstract

The study of conifer chemical defense has been dominated by investigations of oleoresin and its components. However, the actual function of resin components in plant defense and their mode of action is still uncertain, and the role of other defense compounds is relatively unexplored.We are studying the biochemical and molecular bases of chemical defenses, including terpenes, phenolics and chitinases, in Norway spruce (Picea abies) to learn more about how the accumulation of defense compounds is regulated, with the long-term goal of manipulating defense levels to test their function.Manipulation can be crudely accomplished by treatment with methyl jasmonate, which often mimics the general increases in defenses seen following herbivore or pathogen attack. Such treatment was shown to increase resistance to a fungal associate of bark beetles.To more conclusively test function, isolated genes of defense biosynthetic pathways are being transformed into Norway spruce to produce plants whose defense profiles are altered more precisely.

Abstract

When conifers such as Picea abies (Norway spruce) are attacked by insects or pathogens, they often produce increased quantities of terpenoid oleoresin. This response can be mimicked in young P. abies seedlings by treatment with methyl jasmonate. In this study, we determined the effect of methyl jasmonate on the terpenoids and other chemical defenses of mature P. abies, and investigated if this treatment protected trees against attack by the blue-stain fungus Ceratocystis polonica, the most important fungal associate of the bark beetle Ips typographus. Methyl jasmonate treatment induced the formation of traumatic resin ducts in the developing xylem, enhanced resin flow, and stimulated increased accumulation of monoterpenes, sesquiterpenes, and diterpene resin acids. However, almost no significant changes in terpene composition were detected. In addition, no changes in soluble phenolic content were observed. There was a very high variability both among and within clones in the timing and degree of response to methyl jasmonate. These chemical and anatomical changes were correlated with increased resistance to C. polonica, suggesting that terpenoid oleoresin may function in defense against this pathogen.

Abstract

Utvalgt Forelesning/Selected Talk: Survival and competitive successes of boreal forest trees depend on a balance between exploiting the full growing season and minimising frost injury through proper timing of hardening in autumn and dehardening in spring. Our research has shown that the female parents of Norway spruce adjust these timing events in their progeny according to the prevailing temperature conditions during sexual reproduction. Reproduction in a cold environment advances bud-set and cold acclimation in the autumn and dehardening and flushing in spring, whereas a warm reproductive environment delays these progeny traits by an unknown non-Mendelian mechanism. We have performed identical crosses in combination with timed temperature treatments during shorter and longer periods from female meiosis, pollen tube growth, syngamy and embryogenesis, tested the progenies for bud-set and frost hardiness, and concluded that the effect of temperature most likely is a response to accumulated heat during embryogenesis and seed maturation. Our first attempt to look for a molecular mechanism has revealed that transcription of PHYO, PHYP and PHYN and the class IV chitinase PaChi4 (using RealTime PCR) all show higher transcription levels in progenies born under cold conditions than their full-sibs born under warmer conditions. This result is consistent with preliminary findings that methylation of cytosine in total DNA is higher in progenies reproduce under warm conditions than their colder full-sib counterparts. If these observations are related to methylation, we may explain why progenies with a memory of a past time cold embryogenesis are more sensitive to short days than their full-sibs with a warmer embryonic history.

To document

Abstract

The anatomical defense responses in stems of Norway spruce (Picea abies) clones of different resistance to pathogenic fungi were characterized over time and distance from small mechanical wounds or wounds inoculated with the root rot fungus Heterobasidion annosum. Common responses for both treatments included division of ray parenchyma and other cells in the cambial zone, accumulation of phenolic inclusions in ray parenchyma cells, activation of phloem parenchyma (PP) cells, and formation of traumatic resin ducts (TDs) in the xylem. TD formation occurred synchronously from a tangential layer of cells, or symplasmic domain, within the zone of xylem mother cells. TD induction is triggered by a signal, which propagates a developmental wave in the axial direction at about 2.5cm per day. TDs are formed at least 30cm above single inoculations within 16–36days after inoculation. The size and number of TDs is attenuated further away from the inoculation site, indicating a dose-dependent activity leading to TD development. Compared to sterile wounding, fungal inoculation gave rise to more and larger TDs in all clones, and multiple rows of TDs in weak clones. Fungal inoculation also induced the formation of more new PP cells, increasing the number of PP cells in the phloem in the year of inoculation up to 100%. TD and PP cell formation was greater in susceptible compared to resistant clones and after fungal versus sterile inoculation. Potential mechanisms responsible for this variable response are discussed.

Abstract

Introduction: The objectives of the present study were to monitor H. annosum colonization rate (Hietala et al., 2003) and expression of host chitinases in clonal Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR.Material and MethodsInoculation experiment: Ramets of two 32 -year-old clones differing in resistance were employed as host material. Inoculation and wounding was performed. A rectangular strip containing phloem and cambium, with the inoculation site in the middle, was removed 3, 7 and 14 days after inoculation.Quantification of fungal colonizationMultiplex real-time PCR detection of host and pathogen DNA was performed (Hietala et al., 2003). Quantification of gene expression: Chitinase levels were monitored with Singleplex real-time PCR.Results and ConclusionsThe colonization profiles provided by the quantitative multiplex real-time PCR procedure (Hietala et al., 2003), when combined with spatial and temporal transcript profiling of 3 chitinases, provide a useful basis for identifying defense related genes, and for assessing their impact on pathogen colonization rates.Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak (409) clone.Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signalperception.

Abstract

We have monitored the H. annosum colonization rate and expression of host chitinases in Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR. Ramets of two 32 -year-old clones differing in resistance were employed as host material and inoculation and wounding was performed. Quantification of fungal colonization: Multiplex real-time PCR detection of host and pathogen DNA was performed. Chitinase transcript levels were also monitored with real-time PCR. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak clone (409). Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signal perception. The spatiotemporal accumulation patterns obtained for the two clones used are consistent with their resistance classifications, these warranting further and more detailed studies on these chitinases.