Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

Abstract

The use of digital aerial photogrammetry (DAP) for forest inventory purposes has been widely studied and can produce comparable accuracy compared with airborne laser scanning (ALS) in small, homogeneous areas. However, the accuracy of DAP for large scale applications with heterogeneous terrain and forest vegetation has not yet been reported. In this study we examined the accuracy of timber volume, biomass and basal area prediction models based on DAP and national forest inventory (NFI) data on a large area in central Norway. Two separate point clouds were derived from aerial image acquisitions of 2010 and 2013. Vegetation heights were extracted by subtracting terrain elevation derived from ALS. A large number of NFI sample plots (483) measured between 2010 and 2014 were used as reference data to fit linear models for timber volume, biomass and basal area with height metrics derived from the DAP data as explanatory variables. Variables describing the heterogeneous environmental and image acquisition conditions were calculated and their influence on the model accuracy was tested. The results showed that forest parameter prediction using DAP works well when applied to a large area. The model fits of the timber volume, biomass and basal area models were good with R2 of 0.80, 0.81, 0.81 and RMSEs of 41.43 m3 ha−1 (55% of the mean observed value), 32.49 t ha−1 (47%), 5.19 m2 ha−1 (41%), respectively. Only a small proportion of the variation could be attributed to the heterogeneous conditions. The inclusion of the relative sun inclination led to an improvement of the model RMSEs by 2% of the mean observed values. The relatively low cost and stability across large areas make DAP an attractive source of auxiliary information for large scale forest inventories.

2016

To document

Abstract

Key Message. This analysis of the tools and methods currently in use for reporting woody biomass availability in 21 European countries has shown that most countries use, or are developing, National Forest Inventory-oriented models whereas the others use standwise forest inventory--oriented methods. Context. Knowledge of realistic and sustainable wood availability in Europe is highly relevant to define climate change mitigation strategies at national and European level, to support the development of realistic targets for increased use of renewable energy sources and of industry wood. Future scenarios at European level highlight a deficit of domestic wood supply compared to wood consumption, and some European countries state they are harvesting above the increment. Aims. Several country-level studies on wood availability have been performed for international reporting. However, it remains essential to improve the knowledge on the projection methods used across Europe to better evaluate forecasts. Methods. Analysis was based on descriptions supplied by the national correspondentsinvolved in USEWOOD COST Action (FP1001), and further enriched with additionaldata from international reports that allowedcharacterisation of the forests in these countries for the same base year. Results. Methods currently used for projecting wood availability were described for 21 European countries. Projection systems based on National Forest Inventory (NFI) data prevail over methods based on forest management plans. Only a few countries lack nationwide projection tools, still using tools developed for specific areas. Conclusions. A wide range of NFI-based systems for projecting wood availability exists, being under permanent improvement. The validation of projection forecasts and the inclusion of climate sensitive growth models into these tools are common aims for most countries. Cooperation among countries would result in higher efficiency when developing and improving projection tools and better comparability among them.

To document

Abstract

Norway spruce (Picea abies (L.) Karst.) understory seedlings, growing in partially harvested plots with different canopy cover in a boreal spruce stand, were spot fertilized (Hydro 15-4-12) 9 years after planting. The principal aimwasto test the hypothesis that nitrogen (N)availability influences growthof understory seedlings at intermediate but not at lowlevels of irradiance. In addition, we tested the combined influences of N and light availability on selected morphological and phenological traits, covering a 2-year period after treatment. Diffuse radiation (DIFR) at the seedling level was estimated from hemispherical photographs and ranged from 19 to 46 per cent of DIFR in openconditions. Fertilizer applicationwasassociatedwithamarkedincreasein foliarNconcentration.Thefertilized seedlings grew better in height and root collar diameter compared with unfertilized controls. While the absolute growth in both diameterand height increased with increasing DIFR, seedlings also responded to improved nutrient availability across the rangeof light conditions studied. Fertilizer treatment did not affect thenumberof nodal buds, but we observed a higher apical dominance ratio and advanced bud burst in fertilized seedlings. In conclusion, nutrient availability influenced growth and bud phenology of understory Norway spruce seedlings at least down to 20 per cent DIFR.