Aaron Smith
Research Scientist
Abstract
Forest age structure is one of the most important ecological indicators of forest sustainability in terms of biodiversity, forest history, harvesting potentials, carbon storage, and recreational values. The available information on the forest age is most often stand age from forest management plans or national forest inventories. Depending on the definition, stand age is often not a good indicator for the biological age of the dominant trees in a stand. Here, we used 6,998 increment cores from dominant Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) sampled on National Forest Inventory (NFI) plots throughout Norway to gain a better understanding of the age structure of Norway spruce and Scots pine stands in Norway, and on the relationship between the recorded stand age and the biological age of dominant trees on the NFI plots. In forest with stand ages indicating that the stand was established after the abandonment of selective harvesting in favor of even-aged management dominated by clear-cutting methods (ca.1940 C.E.), we found no systematic difference between the biological age of the sampled trees and the stand age assessed by the NFI. In older stands, there was a large difference between the stand age and the age of the overstory trees with the sampled age trees occasionally being hundreds of years older than the stand age. Our study also reveals that the area of forest with old Norway spruce and Scots pine trees ≥ 160 years old is considerably higher than the corresponding area estimate based on information derived from the stand age only. These results are important as the stand age is often used to characterize status with respect to forest naturalness, biodiversity, guide protection efforts, and describe the appropriate and allowed management activities.
Abstract
There is currently no quality sorting of harvested hardwood timber in Norway on a national scale. Medium- and high-quality logs including those from birch (Betula pubescens Ehrh., B. pendula Roth) are thus not utilized according to their potential monetary value. Increased domestic utilization of quality birch timber requires that the quality of harvested logs be properly assessed for potential end uses. A preferred sorting procedure would use visually detectable external log defects to grade roundwood timber. Knots are an important feature of inner log quality. Thus, the aim of this study was to evaluate whether correlations between branch scar size and knot features could be found in Norwegian birch. Using 168 knots from seven unpruned birch trees, external bark attributes often showed strong correlations with internal wood quality. Both length of the mustache and length of the seal performed well as predictors of stem radius at the time of knot occlusion. The presence of a broken off branch stub as part of an occluded knot significantly increased the knot-effected stem radius, proving that the practice of removing branches and branch stubs along the lower trunk is a crucial measure if quality timber production is the primary management goal.
Abstract
No abstract has been registered