Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Til dokument

Sammendrag

Pesticides in agricultural surface water runoff cause a major threat to freshwater systems. Installation of filter systems or constructed wetlands in areas of preferential run-off is a possible measure for pesticides abatement. To develop such systems, combinations of filter materials suitable for retention of both hydrophilic and hydrophobic organic pesticides were tested for pesticide removal in planted microcosms. The retention of six pesticides frequently detected in surface waters (bentazone, MCPA, metalaxyl, propiconazole, pencycuron, and imidacloprid) was evaluated in unplanted and planted pot experiments with novel bed material mixtures consisting of pumice, vermiculite, water super-absorbent polymer (SAP) for retention of ionic and water soluble pesticides, and synthetic hydrophobic wool for adsorption of hydrophobic pesticides. The novel materials were compared to soil with high organic matter content. The highest retention of the pesticides was observed in the soil, with a considerable translocation of pesticides into the plants, and low leaching potential, in particular for the hydrophobic compounds. However, due to the high retention of pesticides in soil, environmental risks related to their long term mobilization cannot be excluded. Mixtures of pumice and vermiculite with SAP resulted in high retention of i) water and ii) both hydrophilic and hydrophobic pesticides but with much lower leaching potential compared to the mineral systems without SAP. Mixtures of such materials may provide near natural treatment options in riparian strips and also for treatment of rainwater runoff without the need for water containment systems.

Til dokument

Sammendrag

Arbuscular mycorrhizal fungi (AMF) are important in plant nutrient uptake, but their function is prone to environmental constraints including soil factors that may suppress AMF transfer of phosphorus (P) from the soil to the plant. The objective of this study was to disentangle the biotic and abiotic components of AMF-suppressive soils. Suppression was measured in terms of AMF-mediated plant uptake of 33P mixed into a patch of soil and treatments included soil sterilization, soil mixing, pH manipulation and inoculation with isolated soil fungi. The degree of suppression was compared to volatile organic compound (VOC) production by isolated fungi and to multi-element analysis of soils. For a selected suppressive soil, sterilization and soil mixing experiments confirmed a biotic component of suppression. A Fusarium isolate from that soil suppressed the AMF activity and produced greater amounts than other fungal isolates of the antimicrobial VOC trichodiene (a trichothecene toxin precursor), beta-chamigrene, alpha-cuprenene and p-xylene. These metabolites deserve further attention when unravelling the chemical background behind the suppression of AMF activity by soil microorganisms. For the abiotic component of suppression, soil liming and acidification experiments confirmed that suppression was strongest at low pH. The pH effect might be associated with changed availability of specific suppressive elements. Indeed 33P uptake from the soil patches correlated negatively to Al levels and Al toxicity seems to play a major role in the AMF suppressiveness at pH below 5.0–5.2. However, the documentation of a biotic component of suppression for both low and high pH soils leads to the conclusion that biotic and abiotic components of suppression may act in parallel in some soils. The current insight into the components of soil suppressiveness of the AMF activity aids to develop management practices that allow for optimization of AMF functionality.

Til dokument

Sammendrag

Given the increasing attention on the occurrence of microplastics in the environment, and the potential envi-ronmental threats they pose, there is a need for researchers to move quickly from basic understanding to applied science that supports decision makers in finding feasible mitigation measures and solutions. At the same time, they must provide sufficient, accurate and clear information to the media, public and other relevant groups (e.g., NGOs). Key requirements include systematic and coordinated research efforts to enable evidence-based decision making and to develop efficient policy measures on all scales (national, regional and global). To achieve this, collaboration between key actors is essential and should include researchers from multiple disciplines, policy-makers, authorities, civil and industry organizations, and the public. This further requires clear and informative communication processes, and open and continuous dialogues between all actors. Cross-discipline dialogues between researchers should focus on scientific quality and harmonization, defining and accurately communi-cating the state of knowledge, and prioritization of topics that are critical for both research and policy, with the common goal to establish and update action plans for holistic benefit. In Norway, cross-sectoral collaboration has been fundamental in supporting the national strategy to address plastic pollution. Researchers, stakeholders and the environmental authorities have come together to exchange knowledge, identify knowledge gaps, and set targeted and feasible measures to tackle one of the most challenging aspects of plastic pollution: microplastic. In this article, we present a Norwegian perspective on the state of knowledge on microplastic research efforts. Norway’s involvement in international efforts to combat plastic pollution aims at serving as an example of how key actors can collaborate synergistically to share knowledge, address shortcomings, and outline ways forward to address environmental challenges.

2020

Sammendrag

There is an increasing interest in plastics, both as a resource and as a pollutant. In Europe, 25.8 million tons of plastic waste are generated each year, and their effects on climate, economy, human and environmental health are major challenges that society needs to address. Although a lot of emphasis is placed on recycling, the use of recycled plastics is still low in the EU. In this context, climate change and environmental concerns have boosted the development of various types of biodegradable plastics. The use of biodegradable plastics spans from disposable containers for food/drink, serviceware and wipes, via waste bags for organic waste collected for biogas production, to agricultural films used to cover soil during vegetable production. However, biodegradable plastics are rarely degraded so quickly and completely that the products disappear in nature, and the label may encourage people think otherwise, enhancing littering. The aim of our study was to describe the fate of biodegradable materials and products during waste treatment, and more specifically during composting. How long does it take these materials to degrade? What are the conditions for degradation, and ultimately, for obtaining plastic-free compost products? To answer these questions, we selected relevant materials, including compostable serviceware, biodegradable plastic bags used for organic waste collection, and biodegradable agricultural mulch films. Composting experiments were performed both at lab-scale (1.5 L containers with externally applied heating) and larger scale (in 140 L insulated compost tumblers, with natural heating from the composting processes, continuously monitored). The endpoints studied were recovery, mass loss, changes in morphology and composition, and microbial analysis of the various composts. In addition, we assessed the applicability of chemical digestion methods used for sample pretreatment of environmental samples containing conventional plastics to biodegradable plastics. Biodegradable plastics is an umbrella term covering materials with diverse polymeric compositions and thus material properties. This was well demonstrated by our selected materials, which displayed distinct degradation behaviors under similar controlled conditions. The time-course of degradation during composting will be presented for all selected materials, together with the main parameters influencing their degradation rates. In addition, some methodological challenges in this research field will be discussed. Finally, experience from a municipal composting facility receiving biodegradable plastic waste will also be presented to put our laboratory-based results into perspective.