Biography

Education: Doctoral degree (PhD) (2017) in microbiology at the University of Life Sciences, NMBU.

Area of research:

  • Blue / green bio economy (agriculture / aquaculture)
  • Climate and environmentally friendly management of organic residual fractions (animal manure, fish sludge, slaughterhouse waste etc)
  • Anaerobic degradation of organic fractions
  • Biogas process and methane production
  • Dynamics in anaerobic microbiological communities
  • Tolerance for nitrogen (ammonia) and fatty acids (LCFA / VFA) in anaerobic microbiological communities
  • Syntrophic relations between different groups of bacteria and methanogenic Archaea

At Ås we have Norway's largest biogas laboratory, with equipment and instruments for various types of biogas experiments (e.g. potential tests, long-term continuous biogas experiments, analysis of gas and organic material). The laboratory also has facilities for micro-algae experiments, composting experiments and a number of different analyzes.

Read more
To document

Abstract

Biofilm is a syntrophic community of microorganisms enveloped by extracellular polymeric substances and displays remarkable adaptability to dynamic environments. Implementing biofilm in anaerobic digestion has been widely investigated and applied as it promotes microbial retention time and enhances the efficiency. Previous studies on anaerobic biofilm primarily focused on application in wastewater treatment, while its role has been significantly extended to accelerate the degradation of lignocellulosic biomass, improve gas–liquid mass transfer for biogas upgrading, or enhance resistance to inhibitors or toxic pollutants. This work comprehensively reviewed the current applications of biofilm in anaerobic digestion and focused on impacting factors, optimization strategies, reactor set-up, and microbial communities. Moreover, a full-scale biofilm reactor case from Norway is also reported. This review provides a state of-the- art insight on the role of biofilm in anaerobic digestion.