Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

Self-sufficiency with feed (SSF) is a basic principle in organic animal production. The current regulations do not impose strict requirements for SSF at farm level, but further restrictions are expected in future. The aim of the present work was to quantify SSF on a range of organic dairy farms in Norway and study farmers’ strategies to produce milk with a high degree of SSF. Nine farms were selected for interview and data collection. On farm level, the proportion of SSF varied between 66 and 99 %. SSF increased to 88-100 % when expressed on national level. Land area is among the limiting factors for famers to reach higher SSF while maintaining the milk production level. A lower proportion of concentrates in the diet seems to have as strong impact on SSF as using own cereals and protein crops as feed, but milk production per total feed production area was highest for the latter. The farmers’ goals and actions are important driving forces to develop more SSF in dairy production systems.

To document

Abstract

In 2016, the Sustainable Development Working Group (SDWG) endorsed The Arctic as a Food Producing Region research project. Involving research teams from Iceland, Norway, Canada, Greenland, and Russia, the objective of the project was to assess the potential for increased production and added value of foods originating from the Arctic, with the overarching aim of improving food security, while enhancing the social and economic conditions of Arctic communities. Although the Arctic was recognised as an important food-producing region, there was a shared sense that the Arctic was not meeting its full potential, either in terms of satisfying local food needs or for maximising its domestic or international export potential. Yet beyond speculation, much of which was informed by individual or anecdotal experience, there was little understanding of the current production capacities of Arctic food sectors or where opportunities may lie for sustainable growth. The aim of the project was, therefore, threefold: (1) complete an inventory of the current levels of Arctic food production in terms of products, volumes, revenues; (2) identify the constraints and opportunities for increased production value-added opportunities; and (3) identify potential pathways and new value chains for expanding Arctic food production and distribution opportunities. .............

To document

Abstract

Greenhouses are complex systems whose size, shape, construction material, and equipment for climate control, lighting and heating can vary largely. The greenhouse design can, together with the outdoor weather conditions, have a large impact on the economic performance and the environmental consequences of the production. The aim of this study was to identify a greenhouse design out of several feasible designs that generated the highest net financial return (NFR) and lowest energy use for seasonal tomato production across Norway. A model-based greenhouse design method, which includes a module for greenhouse indoor climate, a crop growth module for yield prediction, and an economic module, was applied to predict the NFR and energy use. Observed indoor climate and tomato yield were predicted using the climate and growth modules in a commercial greenhouse in southwestern Norway (SW) with rail and grow heating pipes, glass cover, energy screens, and CO2-enrichment. Subsequently, the NFR and fossil fuel use of five combinations of these elements relevant to Norwegian conditions were determined for four locations: Kise in eastern Norway (E), Mære in midwestern Norway (MW), Orre in southwestern Norway (SW) and Tromsø in northern Norway (N). Across designs and locations, the highest NFR was 47.6 NOK m−2 for the greenhouse design with a night energy screen. The greenhouse design with day and night energy screens, fogging and mechanical cooling and heating having the lowest fossil energy used per m2 in all locations had an NFR of −94.8 NOK m−2. The model can be adapted for different climatic conditions using a variation in the design elements. The study is useful at the practical and policy level since it combines the economic module with the environmental impact to measure CO2 emissions.

Abstract

To hundre mjølkebruk i Midt-Norge blei delt i tre nesten like store grupper; 'Låg' (68 gardar), 'Medium' (67 gardar) og 'Høg' (68 garder), etter årleg tildeling av kraftfôr til mjølkekyrne for å teste effekten av kraftfôrnivå på indikatorar for miljøpåverknad og økonomisk lønsemd. Gjennomsnittleg årleg kraftfôrnivå per ku var 15,4, 18,8 og 21,7 GJ nettoenergi laktasjon (NEL) og årleg avdrått i energikorrigert mjølk (EKM) per ku var 7868, 8421 og 8906 kg i høvesvis 'Låg', ‘Medium’og ‘Høg’. Standard livsløpsanalyse og dekningsbidrag blei brukt til å bestemme indikatorar for miljøpåverknad og økonomiske resultat av mjølk- og kjøttproduksjon. Den funksjonelle eininga var mengde 2,78 MJ spiseleg energi, tilsvarande 1,0 kg EKM eller 0,42 kg kjøtt eller en kombinasjon av mjølk og kjøtt som utgjer 2,78 MJ, altså EKM ekvivalent i mjølk og kjøtt levert EKM-eq. Det globale oppvarmingspotensialet, energiintensiteten og nitrogenintensiteten var i gjennomsnitt 1,46 kg CO2- eq./kg EKM-eq., 5,61 MJ energibruk/kg EKM-eq., og 6,83 N input/N-produkt, og var ikkje forskjellig mellom gruppene. Gardar med ‘Låg’ kraftfôrtildeling brukte mindre areal av total arealbruk til dyrking av innkjøpt fôr utanfor garden enn de i ‘Høg’ (0,39 vs. 0,46 daa/daa), men det totale arealet som blei brukt per kg EKM-eq. var større ('Låg' 3,24 vs. 'Høg' 2,84 m2/kg EKM-eq.). Dekningsbidraget per kg EKM-eq. levert var i gjennomsnitt høgare på 'Låg' gardar (6,57 NOK/kg EKM-eq.) enn 'Medium' (6,04 NOK/ kg EKM-eq.) og 'Høg' (5,73 NOK/kg ECM-eq.). Vår analyse viser at høgare kraftfôrnivå ikkje alltid gir mindre global oppvarmingspotensiale og mengd fossil energi per kg mjølk og kjøtt produsert samanlikna med lågare kraftfôrnivå.

To document

Abstract

Cultivated peatlands under drainage practices contribute significant carbon losses from agricultural sector in the Nordic countries. In this research, we developed the BASGRA-BGC model coupled with hydrological, soil carbon decomposition and methane modules to simulate the dynamic of water table level (WTL), carbon dioxide (CO2) and methane (CH4) emissions for cultivated peatlands. The field measurements from four experimental sites in Finland, Denmark and Norway were used to validate the predictive skills of this novel model under different WTL management practices, climatic conditions and soil properties. Compared with daily observations, the model performed well in terms of RMSE (Root Mean Square Error; 0.06–0.11 m, 1.22–2.43 gC/m2/day, and 0.002–0.330 kgC/ha/day for WTL, CO2 and CH4, respectively), NRMSE (Normalized Root Mean Square Error; 10.3–18.3%, 13.0–18.6%, 15.3–21.9%) and Pearson's r (Pearson correlation coefficient; 0.60–0.91, 0.76–0.88, 0.33–0.80). The daily/seasonal variabilities were therefore captured and the aggregated results corresponded well with annual estimations. We further provided an example on the model's potential use in improving the WTL management to mitigate CO2 and CH4 emissions while maintaining grass production. At all study sites, the simulated WTLs and carbon decomposition rates showed a significant negative correlation. Therefore, controlling WTL could effectively reduce carbon losses. However, given the highly diverse carbon decomposition rates within individual WTLs, adding indi-cators (e.g. soil moisture and peat quality) would improve our capacity to assess the effectiveness of specificmitigation practices such as WTL control and rewetting.