Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

Forest inventories provide predictions of stand means on a routine basis from models with auxiliary variables from remote sensing as predictors and response variables from field data. Many forest inventory sampling designs do not afford a direct estimation of the among-stand variance. As consequence, the confidence interval for a model-based prediction of a stand mean is typically too narrow. We propose a new method to compute (from empirical regression residuals) an among-stand variance under sample designs that stratify sample selections by an auxiliary variable, but otherwise do not allow a direct estimation of this variance. We test the method in simulated sampling from a complex artificial population with an age class structure. Two sampling designs are used (one-per-stratum, and quasi systematic), neither recognize stands. Among-stand estimates of variance obtained with the proposed method underestimated the actual variance by 30-50%, yet 95% confidence intervals for a stand mean achieved a coverage that was either slightly better or at par with the coverage achieved with empirical linear best unbiased estimates obtained under less efficient two-stage designs.

To document

Abstract

In the EU 2020 biodiversity strategy, maintaining and enhancing forest biodiversity is essential. Forest managers and technicians should include biodiversity monitoring as support for sustainible forest management and conservation issues, through the adoption of forest biodiversity indices. The present study investigates the potential of a new type of Structure from Motion (SfM) photogrammetry derived variables for modelling forest structure indicies, which do not require the availability of a digital terrain model (DTM) such as those obtainable from Airborne Laser Scanning (ALS) surveys. The DTM-independent variables were calculated using raw 3D UAV photogrammetric data for modeling eight forest structure indices which are commonly used for forest biodiversity monitoring, namely: basal area (G); quadratic mean diameter (DBHmean); the standard deviation of Diameter at Breast Height (DBHσ); DBH Gini coefficient (Gini); the standard deviation of tree heights (Hσ); dominant tree height (Hdom); Lorey’s height (Hl); and growing stock volume (V). The study included two mixed temperate forestsareas withadifferenttype ofmanagement, with onearea, left unmanagedfor thepast 50years while the other being actively managed. A total of 30 fieldsample plots were measured in the unmanaged forest, and 50 field plots were measured in the actively managed forest. The accuracy of UAV DTM-independent predictions was compared with a benchmark approach based on traditional explanatory variables calculated from ALS data. Finally, DTM-independent variables were used to produce wall-to-wall maps of the forest structure indices in the two test areas and to estimate the mean value and its uncertainty according to a model-assisted regression estimators. DTM-independent variables led to similar predictive accuracy in terms of root mean square error compared to ALS in both study areas for the eight structure indices (DTM-independent average RMSE% = 20.5 and ALS average RMSE% = 19.8). Moreover, we found that the model-assisted estimation, with both DTM-independet and ALS, obtained lower standar errors (SE) compared to the one obtained by modelbased estimation using only field plots. Relative efficiency coefficient (RE) revealed that ALS-based estimates were, on average, more efficient (average RE ALS = 3.7) than DTM-independent, (average RE DTM-independent = 3.3). However, the RE for the DTM-independent models was consistently larger than the one from theALSmodelsfortheDBH-relatedvariables(i.e.G,DBHmean,andDBHσ)andforV.Thishighlightsthepotential of DTM-independent variables, which not only can be used virtually on any forests (i.e., no need of a DTM), but also can produce as precise estimates as those from ALS data for key forest structural variables and substantially improve the efficiency of forest inventories.