Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

Abstract

Area-efficient constructed systems for stormwater management and bioretention may involve large fluc-tuations in subsurface water levels. Such fluctuations challenge vegetation by forcing roots to exploredeeper layers to access water during dry periods. In a controlled experiment, we studied growth pat-terns and the ability of Phragmites australis roots to track subsurface water level fluctuations of differingamplitude and frequency in substrates with contrasting water-holding capacity. We found that P. aus-tralis was able to adjust its rooting pattern to considerable subsurface water level fluctuations (to wellbelow 120 cm), but that substrate characteristics can restrict its ability to adjust to larger fluctuations.Fluctuation amplitude was the driving factor for plant growth and biomass allocation responses, whilesubstrate characteristics and fluctuation frequency were less important. When not exposed to large waterlevel fluctuations, P. australis grew larger shoots and only explored intermediate rooting depths. Therewas a negative relationship between root and rhizome biomass, showing a resource-based trade-off andshort-term costs of adjusting rooting patterns to large water level fluctuations. These results indicatethat P. australis is suited for systems with considerable subsurface water fluctuations, but constraints onits flexibility need to be investigated.

To document

Abstract

Although grass dominates most agricultural systems in the North Atlantic region (NAR), spring barley is the most important cereal and is used for animal feed and food and drink products. Recent changes in climate have resulted in warmer conditions across the NAR which have major implications for crop production. In this paper, we investigate the thermal requirement of spring barley in the region and use the results to examine the effects of recent trends in temperature and rainfall on barley cultivation, based on 11 regional meteorological sites. At these sites, between 1975 and 2015, we found significant warming trends for several months of the cropping season and significant trends for increases in the cropping season degree days (CSDD). In recent years, this has resulted in an increased proportion of years when the estimated minimum thermal requirement for barley has been met at sites above about 60°N. However, annual variations in CSDD are large and years still occur at these sites where this is insufficient. While warming could potentially allow an earlier start and later end to the cropping season, it is likely that high rainfall at maritime sites, and low rainfall at continental sites, will limit the ability of growers to benefit from this. Warming is considered to have been one of the main factors contributing to the large expansion of the area of barley cultivated in Iceland since the 1990s.

2016

Abstract

Ventilation management and the tuber maturity at harvest are essential factors in maintaining potato quality during long-term storage. The aim of this study was to examine the effect of ventilation strategy on storage quality of potato tubers with three different maturity levels at harvest. Two potato cultivars, Saturna and Asterix, were stored in small-scale experimental stores and large-scale commercial stores. Both storage categories were ventilated by both low continuous air rates (natural ventilation) and intermittent high air rates (forced ventilation). The different maturity levels were obtained by a combination of pre-sprouting strategy, planting date and level of nitrogen fertilization of the seed tubers, where pre-sprouting, early planting date and low amount of nitrogen resulted in the most mature tubers. Storage quality parameters investigated during and after long-term storage (6 months in small-scale and 4 months in large-scale stores) included weight loss, respiration, dry matter, sucrose, glucose/fructose content and fry colour. In average over three years natural ventilation resulted in higher weight losses in small- and large-scale stores (1.36 and 3.93%), lower content of reducing sugars (glucose + fructose) in large-scale stores (2.35 mg g 1) and lighter fry colour than did forced ventilation. Immature potatoes had higher weight losses (4.16%), higher respiration rates (1.68 mg CO2 kg 1 h 1) and lower dry matter content (22.3–22.5%) than more mature potatoes. This study show that both maturity and ventilation strategy affects storage quality of potatoes as measured by weight loss, sugar content and fry colour.

To document

Abstract

BACKGROUND Marked effects of the climatic environment on fruit chemical composition have often been demonstrated in field experiments. However, complex covariations of several climatic factors in the natural environment complicate the interpretation of such experiments and the identification of the causal factors. This can be better achieved in a phytotron where the various climatic factors can be varied systematically. Therefore, we grew four black currant cultivars of contrasting origin in a phytotron under controlled post-flowering temperature and photoperiod conditions and analysed the berries for their ascorbic acid, sugar and organic acid contents. RESULTS The analyses revealed significant effects of genotype on all investigated compounds. Particularly large cultivar differences were observed in the concentrations of l-ascorbic acid (AA) and sucrose. The concentrations of both AA and dehydroascorbic acid (DHAA), as well as the concentrations of all major sugars, decreased consistently with an increasing temperature over the temperature range 12–24 °C. Fructose and glucose were the predominant sugars with concentrations several fold higher than that for sucrose. AA was the main contributor to the total ascorbate pool in black currant berries. The AA/DHAA ratio varied from 5.6 to 10.3 among the studied cultivars. The concentration of citric acid, which was the predominant organic acid in black currant berries, increased with an increasing temperature, whereas the opposite trend was observed for malic and shikimic acid. Quninic acid was always present at relatively low concentrations. By contrast, photoperiod had no significant effect on berry content of any of the investigated compounds. CONCLUSION It is concluded that the post-flowering temperature has marked effects on the concentration of important chemical compounds responsible for taste and nutritional value of black currant berries, whereas photoperiod has no such effect in the studied cultivars. © 2016 Society of Chemical Industry

To document

Abstract

The effect of fertility status and temperature conditions during floral induction on flowering, berry yield,and weight and drupelet numbers of individual berries were studied in ‘Glen Ample’ raspberries grownunder controlled conditions. Withdrawal of normal fertilization prior to and at various stages duringfloral induction did not affect yield and berry size, but marginally advanced flowering and fruit ripening.The successive stages of floral initiation and differentiation were studied and identified by scanning elec-tron microscopy of the uppermost lateral buds of plants grown for six weeks under naturally decreasingautumn photoperiods at temperatures of 9, 15 and 21◦C. Low temperature advanced floral initiation, andadvanced and enhanced flowering and berry yield in the following season. However, at variance fromearlier studies, the plants eventually initiated flower primordia even at 21◦C. Marginal low temperatureand short day conditions during the last days before the temperature treatments were started on 17September might possibly have reduced the subsequent induction requirements enough to explain thisunexpected result. Correlation analyses revealed an over-all positive correlation between fruit weightand drupelet numbers (r = 0.568, P = 0.01). In berries from the early harvests, the number of drupelets perberry increased with decreasing temperature, while the numbers converged to the same level regardlessof temperature in the later harvests. Based on the progress of the floral initiation process at the vari-ous temperatures, we interpret this to mean that only the early initiated flowers, that gave rise to theearly maturing berries, were differentiated during the actual period of controlled temperature exposure,whereas the remaining flowers were differentiated afterwards when all plants were exposed to identicallow temperature conditions. Increased femaleness under optimal floral induction conditions is in agree-ment with results in both monoecious and dioecious plants and circumstantial evidence suggest that,in the raspberry, this might be mediated by changes in gibberellin activity which acts as a male sexualhormone in plants and is known to inhibit growth cessation and floral initiation in raspberry.

To document

Abstract

Berry yield and chemical composition of four commercial black currant cultivars were recorded in a field experiment in Norway over an 8-year period and related by linear regression analysis to temperature and precipitation conditions prevailing during the May-July preharvest period. Highly significant differences between cultivars and among years were found for all measured parameters. Fruit dry matter, soluble solids and pH were positively correlated with temperature and negatively correlated with precipitation during May-July, while yield, berry weight, and the concentration of total phenols and ascorbic acid showed the opposite relationship, being highly negatively correlated with temperature and positively correlated with precipitation. Similar black currant experiments elsewhere in Europe have often given deviating results, varying from opposite to no effects of the same weather variables, suggesting that fruit composition is influenced by several interacting genetic and environmental parameters. We conclude that differences in local weather and soil conditions and the use of different cultivars complicate direct comparison of such field experiments. Nevertheless, the observed strong and opposite correlations with precipitation and temperature suggest an inherently low drought tolerance of black currant plants.