Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

Abstract

The determination of environmentally minimum water level in lakes is essential for the protection of their ecosystems. The assessment of minimum water level depends on a number of biotic and abiotic factors of the lake ecosystem; however, in many cases these factors are not easy to collect and assess in their entirety. At the same time, the lakes in many cases consist an important water reserve to meet the requirements arising from economic activities, e.g. industry, agriculture. In this paper, the morphological features in four lakes – Vegoritida, Petron, Cheimaditida and Zazari – of Northern Greece are analysed in order to assess their environmentally minimum water level. The morphological analysis is based on the relationship of the lake surface area and volume with the water level. An optimization method is applied taking into account that the biodiversity is favoured as the surface area covered by the lake is increased and the human water requirements are satisfied to the greatest possible extent by the available water volume of the lake. The environmentally minimum water level determined by the morphological analysis in the four lakes is compared with the minimum water level based on the analysis of the requirements of fish fauna and macrophytes.

To document

Abstract

Riverine inputs and direct discharges to Norwegian coastal waters in 2016 have been estimated in accordance with the OSPAR Commission’s principles. Nutrients, metals and organic pollutants have been monitored in rivers; discharges from point sources have been estimated from industry, sewage treatment plants and fish farming; and nutrient inputs from diffuse sources have been modelled. Trends in riverine inputs have been analysed, and threshold concentration levels investigated.

To document

Abstract

Chronic Hepatitis B Virus (HBV) infection leads to severe liver pathogenesis associated with significant morbidity and mortality. As no curable medication is yet available, vaccination remains the most costeffective approach to limit HBV spreading and control the infection. Although safe and efficient, the standard vaccine based on production of the small (S) envelope protein in yeast fails to elicit an effective immune response in about 10% of vaccinated individuals, which are at risk of infection. One strategy to address this issue is the development of more immunogenic antigens. Here we describe a novel HBV antigen obtained by combining relevant immunogenic determinants of S and large (L) envelope proteins. Our approach was based on the insertion of residues 21-47 of the preS1 domain of the L protein (nomenclature according to genotype D), involved in virus attachment to hepatocytes, within the external antigenic loop of S. The resulting S/preS121-47 chimera was successfully produced in HEK293T and Nicotiana benthamiana plants, as a more economical recombinant protein production platform. Comparative biochemical, functional and electron microscopy analysis indicated assembly of the novel antigen into subviral particles in mammalian and plant cells. Importantly, these particles preserve both S- and preS1-specific epitopes and elicit significantly stronger humoral and cellular immune responses than the S protein, in both expression systems used. Our data promote this antigen as a promising vaccine candidate to overcome poor responsiveness to the conventional, S protein-based, HBV vaccine.