Samson Øpstad

Research Scientist

(+47) 406 21 871
samson.opstad@nibio.no

Place
Fureneset

Visiting address
Fure, 6967 Hellevik i fjaler

Abstract

In Norway, the effect of drainage on grassland yields has received little attention for decades. Low level of drainage may be a reason for low grassland production. Therefore, a drainage experiment was established in a western Norwegian ley, on a sandy silt soil with a high capacity for water storage. The plots had six and twelve meters drain spacing, as well as undrained. There were two or three cuts, and fertilization of 190 or 290 kg N yr-1 ha-1. Drainage intensity gave a small significant increase in yield. N loss in drainage water increased with drainage intensity. The yield increase is likely too small to justify drainage, but the intervention might still be worthwhile due to increased N efficiency and a more manageable risk of compaction. A precise quantification of the hydrological effects is hard due to inherent soil variability.

Abstract

In Norway, the effect of drainage on grassland yields has received little attention for decades. Low levels of drainage may be a reason for low grassland production. Therefore, a drainage experiment was established in a western Norwegian ley, on a sandy silt soil with a high capacity for water storage. The plots had six- and twelve-metres drain spacing, as well as an undrained treatment. For each drainage treatment there were two or three cuts per year, and fertilization of 190 or 290 kg N yr-1 ha-1. Drainage intensity gave a small significant increase in yield. N loss in drainage water increased with drainage intensity. The small herbage yield increase is unlikely by itself to justify drainage, but the drainage installation might still be worthwhile due to increased N efficiency and a more manageable risk of compaction. Precise quantification of the hydrological effects is hard to make due to the inherent soil variability.

Abstract

Several studies conclude that permanent and temporary swards are equally productive, given equal management. In Norway, one experimental field trial has been maintained since 1974 (Fureneset; 61°18’N, 5°4’E). This ongoing experiment includes long-term/permanent ley (no-tillage over 25 and 45 years) next to temporary leys reseeded regularly. The objective of the study was to test reseeding/ renovation methods that may maintain long-term forage productivity. We hypothesized that sod seeding after chemical fallowing improves grassland productivity equally to that from reseeding after ploughing. In 2017, the frequently ploughed treatments, and half of the 25-year-old sward, were renewed by ploughing and reseeding with grass-clover seed mixtures. The second half of the 25-year-old sward was chemically fallowed and sod-seeded. The treatments included three different fertilizer strategies: mineral fertilizer (210 N kg ha-1) and cattle slurry in combination with mineral fertilizer (210 and 340 kg total-N kg ha-1). On average for four production years (2018-2021) the dry matter yield (DMY) of permanent sod-seeded 25-year-old ley was about 11 t ha-1, and these yields were equal to swards renewed by ploughing and reseeding.

Abstract

Perennial versus short term (<3 years) grass vegetation cover is likely to have considerable differences in root density and thus carbon (C) inputs to soil. Carbon inputs are important to maintain soil organic carbon (SOC) and may even increase it. In Norway and Scandinavia, the SOC content in soil is often higher than in other parts of Europe, due to the cold climate and high precipitation (i.e. slower turnover rates for soil organic matter) and a dominance of animal production systems with a large amount of grassland. Here we aimed to evaluate differences in SOC content, down to 60 cm depth, of a long-term grassland (without ploughing for decades) and a short-term grassland (frequently renewed by ploughing) under contrasting climate, soil and management conditions. Quantification of SOC was carried out on three long-term experimental sites on an extended latitude gradient in West and North Norway. The samples were taken from 4 depth increments (0-5, 5-20, 20-40 and 40-60 cm) in treatments that have not been ploughed for at least 43 years, and in treatments that were ploughed every third year until 2011. Preliminary results suggest that there is no significant difference in SOC storage down to 60 cm between long-term and short-term grasslands.

Abstract

The abundance of Juncus effusus (soft rush) and Juncus conglomeratus (compact rush) has increased in coastal grasslands in Norway over recent decades, and their spread has coincided with increased precipitation in the region. Especially in water‐saturated, peaty soils, it appears from field observations that productive grasses cannot compete effectively with such rapidly growing rush plants. In autumn–winters of 2012–2013 and 2013–2014, a four‐factor, randomised block greenhouse experiment was performed to investigate the effect of different soil moisture regimes and organic matter contents on competition between these rush species and smooth meadow‐grass (Poa pratensis). The rush species were grown in monoculture and in competition with the meadow‐grass, using the equivalent of full and half the recommended seed rate for the latter. After about three months, above‐ and below‐ground dry matter was measured. J. effusus had more vigorous growth, producing on average 23–40% greater biomass in both fractions than J. conglomeratus. The competitive ability of both rush species declined with decreasing soil moisture; at the lowest levels of soil moisture, growth reductions were up to 93% in J. conglomeratus and 74% in J. effusus. Increasing water level in peat–sand mixture decreased competivitiveness of meadow‐grass, while pure peat, when moist, completely impeded its below‐ground development. These results show that control of rush plants through management may only be achieved if basic soil limitations have been resolved.