Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Enteric methane (CH4) emissions from sheep contribute to global greenhouse gas emissions from livestock. However, as already available for dairy and beef cattle, empirical models are needed to predict CH4 emissions from sheep for accounting purposes. The objectives of this study were to: 1) collate an intercontinental database of enteric CH4 emissions from individual sheep; 2) identify the key variables for predicting enteric sheep CH4 absolute production (g/d per animal) and yield [g/kg dry matter intake (DMI)] and their respective relationships; and 3) develop and cross-validate global equations as well as the potential need for age-, diet-, or climatic region-specific equations. The refined intercontinental database included 2,135 individual animal data from 13 countries. Linear CH4 prediction models were developed by incrementally adding variables. A universal CH4 production equation using only DMI led to a root mean square prediction error (RMSPE, % of observed mean) of 25.4% and an RMSPE-standard deviation ratio (RSR) of 0.69. Universal equations that, in addition to DMI, also included body weight (DMI + BW), and organic matter digestibility (DMI + OMD + BW) improved the prediction performance further (RSR, 0.62 and 0.60), whereas diet composition variables had negligible effects. These universal equations had lower prediction error than the extant IPCC 2019 equations. Developing age-specific models for adult sheep (>1-year-old) including DMI alone (RSR = 0.66) or in combination with rumen propionate molar proportion (for research of more refined purposes) substantially improved prediction performance (RSR = 0.57) on a smaller dataset. On the contrary, for young sheep (<1-year-old), the universal models could be applied, instead of age-specific models, if DMI and BW were included. Universal models showed similar prediction performances to the diet- and region-specific models. However, optimal prediction equations led to different regression coefficients (i.e. intercepts and slopes) for universal, age-specific, diet-specific, and region-specific models with predictive implications. Equations for CH4 yield led to low prediction performances, with DMI being negatively and BW and OMD positively correlated with CH4 yield. In conclusion, predicting sheep CH4 production requires information on DMI and prediction accuracy will improve national and global inventories if separate equations for young and adult sheep are used with the additional variables BW, OMD and rumen propionate proportion. Appropriate universal equations can be used to predict CH4 production from sheep across different diets and climatic conditions.

Abstract

The combination of preharvest treatments with calcium chloride and fungicides, and storage of maturity graded fruit were assessed in five European plum cultivars. At harvest, samples of fruit within a commercially suitable range in ripening were divided into two categories: less-ripe (tree ripe-) and more-ripe (tree ripe+). The fruit were stored for 10–14 days at 4 °C followed by 2–3 days at 20 °C before the assessment of fungal decay. If calcium chloride was applied six times each season, postharvest fruit decay was significantly reduced in four of nine experiments, with a total mean reduction of around 50%. Two calcium applications in combination with a fungicide treatment reduced decay by approx. 60% compared to the untreated in one experiment. In six of seven experiments there was no effect of preharvest fungicide applications. In six of 10 experiments, fruit of the category tree ripe- had fewer fruit with fungal decay after storage than the tree ripe+fruit. The higher incidence in the category tree ripe+fruit was primarily due to brown rot, Mucor rot, and blue mould. For the category tree ripe+, there was two to ten times more decay than on tree ripe- fruit after a simulated shelf-life period. To ensure low incidence of fungal decay, fruit of commercial harvest maturity may thus be separated in two ripening categories, one for rapid distribution to the market (tree ripe+) and another for extended distribution time (tree ripe-).

To document

Abstract

Questions During the winter of 2014, an intense drought combined with sub-zero temperatures resulted in a massive Calluna dieback in Norwegian heathlands. We studied the initial vegetation recovery under two management approaches: natural recovery and prescribed burning. We hypothesized that natural recovery will be slower in more drought-affected sites, whereas burning will facilitate post-fire recovery in all sites by effectively removing dead and damaged heath. Both natural recovery and post-fire succession will be slower in the north. Location Calluna heath in seven sites spanning an approx. 600-km latitudinal gradient along the coast of Norway (60.22–65.69° N). Methods After a natural drought, 10 permanent plots per site were either burnt or left for natural recovery. Vegetation data were recorded annually in 2016 (pre-fire) and 2017–2019 (post-fire) reflecting a factorial repeated-measures design (n = 280). The data were analyzed using mixed-effects models. Results Two years after the drought, we observed high but variable Calluna damage and mortality. Over the four years of study, damaged Calluna recovered, whereas dead Calluna showed little recovery. Both the extent of the damage and mortality, as well as the rate of natural recovery, are only weakly related to site climate or environmental factors. Fire efficiently removed dead and damaged Calluna and facilitated post-fire successional dynamics and recovery in a majority of sites. Conclusions Extreme winter drought resulted in substantial and often persistent damage and dieback on Calluna along the latitudinal gradient. In sites with high mortality, prescribed burning removed the dead biomass and, in some cases, facilitated vegetation recovery. Traditional heathland management, which uses burning to facilitate all-year grazing by Old Norse sheep in Atlantic coastal heathlands, can be an efficient tool to mitigate dieback events and more generally to increase resistance to and resilience after extreme drought events in the future.

Abstract

The aim of the article is to assess whether agricultural landscapes play a role in the perception of Norway held by tourists and residents. An additional aim is to analyse whether information accompanying images on social media indicate that the photographers have acknowledged the agricultural landscape. The authors used geotagged images uploaded to the image-sharing platform Flickr in their analyses. They selected photos from within the agricultural landscapes, inspected them, and categorized them according to extent and content. Additionally, they analysed the accompanying hashtags. The findings revealed that a large proportion of the photos contained agricultural landscapes, and thus confirmed the importance of the agricultural landscape for visual perception of and access to Norwegian landscapes. In addition, the lack of agricultural-related hashtags strengthened the authors’ suspicions that this might not have been widely recognized by the photographers. Thus, while agricultural landscapes commonly are considered primarily as landscapes of food production, the authors conclude that these landscapes also fulfil other functions and that their contribution to the perception of Norway is important. Additionally, many of the landscape elements seen and analysed in the sample of photos are elements that play a role in providing cultural ecosystem services.