Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2025

Abstract

1. The results of nature restoration efforts have been characterized as notoriously unpredictable. Many variables impact the trajectory of species communities towards recovery, and ecological theory that takes traits, habitat configuration and scale into account, can improve models. However, the most important questions regarding the predictability of species community restoration may be related to stochasticity. 2. We investigated the assembly of a cyanolichen community in a chronosequence consisting of 88 new forest patches (30–140+ years old) comprising today 0.4% of a 170 km2 former treeless heathland area in south-western Norway. Two complete inventories were carried out 12 years apart, and we (1) tested inferences on colonization status and recovery time based on the first inventory only; (2) investigated the recovery of the lichen community by changes in species richness, species density and composition at three different spatial scales; and (3) discussed how dispersal capacity and stochasticity affect community recovery in general. 3. Colonization of sites by lichen species exceeded extinctions in young sites but not in old sites, and in the second inventory, the richness of species weighed by occurrences no longer differed significantly between young and old sites at landscape scale. However, the differences between old and young sites depended on the spatial scale and method of measurement. 4. In accordance with inferences based only on the first inventory, colonization and extinction dynamics indicated that recovery of species richness in our study system will take 90–120 years at the landscape scale, whereas recovery of species composition was difficult to determine due to idiosyncratic development among sites. 5. Synthesis and applications. Using species composition as a template for the evaluation of restoration recovery in systems with a high degree of stochastic colonization and extinction is problematic, particularly at finer scales. Ideally, comparisons of restoration and reference communities should therefore be at large enough spatial scale to cancel out the major effects of stochasticity at finer scales. Furthermore, we suggest that a complete recovery of species numbers may not be needed as an indicator of restoration success if species richness measurements indicate that communities are en route to recovery.

To document

Abstract

Large‐scale re‐/afforestation projects afford sizable atmospheric CO2 removals yet questionsloom surrounding their potentially offsetting biogeophysical radiative forcings. Forest area change alters notonly the surface albedo but also heat, moisture, and momentum fluxes, which in turn modify the atmosphere'sradiative, thermodynamical, and dynamical properties. These so‐called radiative forcing “adjustments” havebeen little examined in re‐/afforestation contexts, and many questions remain surrounding their relevance inrelation to the instantaneous forcing from the surface albedo change—and whether they can affect Earth'sradiative energy balance in regions remote from where the re‐/afforestation occurs. Here, we quantifiedbiogeophysical radiative forcings and adjustments from realistically scaled re‐/afforestation in Europe at highspatial resolution and found that adjustments with high signal‐to‐noise were largely confined to only a fewmonths and to the region of re‐/afforestation. Adjustments were dominated by perturbed low‐level clouds andrarely exceeded ±25% of the annual albedo change forcing.

To document

Abstract

Widely distributed plant genera offer insights into biogeographic processes and biodiversity. The Carduus-Cirsium group, with over 600 species in eight genera, is diverse across the Holarctic regions, especially in the Mediterranean Basin, Southwest Asia, Japan, and North America. Despite this diversity, evolutionary and biogeographic processes within the group, particularly for the genus Cirsium, remain underexplored. This study examines the biogeographic history and diversification of the group, focusing on Cirsium, using the largest molecular dataset for the group (299 plants from 251 taxa). Phylogenomic analyses based on 350 nuclear loci, derived from target capture sequencing, revealed highly resolved and consistent phylogenetic trees, with some incongruences likely due to hybridization and incomplete lineage sorting. Ancestral range estimations suggest that the Carduus-Cirsium group originated during the Late Miocene in the Western Palearctic, particularly in the Mediterranean, Eastern Europe, or Southwest Asia. A key dispersal event to tropical eastern Africa around 10.7 million years ago led to the genera Afrocarduus and Afrocirsium, which later diversified in the Afromontane region. The two subgenera of Cirsium—Lophiolepis and Cirsium—began diversifying around 7.2–7.3 million years ago in the Western Palearctic. During the Early Pliocene, diversification rates increased, with both subgenera dispersing to Southwest Asia, where extensive in situ diversification occurred. Rapid radiations in North America and Japan during the Pleistocene were triggered by jump-dispersals events from Asia, likely driven by geographic isolation and ecological specialization. This added further layers of complexity to the already challenging taxonomic classification of Cirsium.Keywords: Biogeography; Carduinae; Cirsium; Diversification; North Hemisphere; Target-enrichment; Taxonomy.