Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Abstract
In regions with short growth seasons, it is of great importance to use potato (Solanum tuberosum L.) seed tubers with a high growth vigour and a short growth cycle. Such qualities may be obtained by treatments advancing the physiological age of the seed tubers. In this study, we have exposed tubers from four cultivars to various combinations of temperature and light conditions (greensprouting) for 3–7 months in controlled climate. Subsequent sprout quality, seed tuber health and performance were studied in laboratory, greenhouse and field trials. Satisfactory short, sturdy and leafy sprouts were produced even after 7 months storage at 15 °C under light exposure. An assay of black scurf (Rhizoctonia solani) on the tuber skin showed that light exposure significantly reduced the occurrence compared with dark-stored tubers, while the average effect of storage temperatures was insignificant. In general, green-sprouting advanced emergence and plant growth by 1–2 weeks, and showed early tuber initiation and growth, compared to untreated material. Yields, 107 days after planting in the field trial, did not deviate significantly from untreated tubers. However, plant development at harvest was in accordance with general responses to physiological ageing of potato seed tubers, i.e. still tall and immature plants from untreated tubers, and short and mature plants from aged tubers. Results demonstrated the possibility of successful long-term storage of potato seed tubers in light at elevated temperatures and a potential for earlier harvests and higher early yields from such treatments.
Abstract
Different seed lots of Pinus spp. cultivated within South Africa were screened for the presence or absence of seed-borne fungi according to modified ISTA (International Seed Testing Association) prescribed protocols. Numerous (454 isolates) fungi were successfully isolated, purified and stored using agar slants and cryopreservation. Sydowia polyspora was isolated from six different seed lots from three Pinus species (P. greggii (South), P. elliottii and P. taeda) and was morphologically and molecularly identified. Koch’s postulates was fulfilled by inoculating one year old seedlings (wounded and unwounded) with a spore suspension (107 ml-1) obtained from 30 day old pure cultures grown on PDA. Inoculated and uninoculated control seedlings were incubated in a greenhouse at 220C until symptom development. Sydowia polyspora was re-isolated from symptomatic needles with both wounded and unwounded needles showing characteristic symptoms. No symptoms were apparent on the control seedlings. To the best of our knowledge, this is the first report of the fungus being isolated and recorded within the country. Further investigations will look at the prevalence, pathogenicity and characterization of the fungus within South Africa.
Authors
Katharina Strobl Claudia Schmidt Johannes KollmannAbstract
Phytometers are indicator transplants that provide information on site conditions based on plant survival,growth and reproduction. Since this is a relatively new approach, standards for its implementation remain to bedefined, for example, during peatland restoration. Peatland restoration frequently aims at recovering char-acteristic communities, and a key attribute of successfully restored ecosystems is their capacity to sustain viablepopulations of target species. When not actively introduced, these species are expected to establish on their ownafter improving site conditions, for example by rewetting. Assessments to determine whether this goal is metrequire the long-term monitoring of species’ presence, whereas the underlying causes of these observations, i.e.site or dispersal limitation, often remain unknown. Using phytometers within ecological restoration helps ad-dressing this question. The goal of this study is to compare the responses of several species and traits to en-vironmental conditions in restored peatlands. Three target species (Drosera rotundifolia, Eriophorum vaginatum,Vaccinium oxycoccos) were planted in restored montane peatlands in central Germany, while in a greenhouseexperiment, the same species were grown on peat from the field sites and exposed to two water levels. Severalplant traits were measured and compared with variation in light, water and soil conditions. The response tohabitat conditions was species-specific, indicating that the use of different phytometers increases the reliabilityof monitoring. Survival and growth traits were suitable to assess a wide range of abiotic conditions, whiledifferences in reproductive output were more time-consuming to measure. Survival provided the most conclusiveresults for species sensitive to stressful habitat conditions. Biomass and other size metrics of the phytometers, aswell as growth and reproductive traits were partly redundant. Thus, we suggest recording survival and biomassand use non-destructive growth measurements for repeated assessments, while the choice of the most suitablesize trait should depend on the growth form. Our study stresses the potential of phytometers for monitoring therestoration outcome, while highlighting the importance of species and trait selection.
Authors
Trygve S. Aamlid Tatsiana Espevig Pia Heltoft Thomsen Agnar Kvalbein Klaus Paaske Oiva Niemeläinen Pentti Ruttunnen Auli Kedonpara Tom Hsiang Annick BertrandAbstract
No abstract has been registered
Abstract
The Norwegian newly bred pear cultivar, Celina/QTee®, which was launched in 2010, has been released from the Norwegian breeding program that was initiated in 1983. It was derived from the combination ‘Colorée de Juillet’ × ‘Williams’. In Norway the flowering is medium to late and it ripens in the beginning of September. It has large attractive fruits with a red blush. It has a good fruit quality, storability and shelf life. Cross pollination is necessary in order to have high yields of this diploid cultivar. Pollination of ‘Celina’ with pollen of four donors (‘Conference’, ‘Kristina’, ‘Anna’ and ‘Fritjof’), together with open- and self-pollination were studied in this experiment during the 2016 season in Norway. The dynamics of the pollen tube growth (third, sixth and ninth day after anthesis) in style (upper, middle and lower third) and parts of the ovary in all crossing combination, were observed by fluorescent microscopy. Besides giving the best results regarding the average number of pollen tubes in different parts of pistils and the dynamics of pollen tube growth, ‘Conference’ was the only one of which the pollen tubes didn’t show any incompatible signs while growing through the transmitting tissue of the ‘Celina’ style. According to those preliminary results, ‘Conference’ was the best pollenizer, followed by ‘Kristina’. The study has to be repeated for another season.
Authors
Anita SønstebyAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Lise Grøva Boris Fuchs Emma Brunberg Unni Støbet Lande Kristin Sørheim Svein-Olaf Hvasshovd Solveig Marie StubsjøenAbstract
SENSOR TECHNOLOGY TO DETECT TICK-BORNE FEVER IN SHEEP ON RANGE PASTURE? Lise GRØVA 1), Boris Fuchs 2), Emma BRUNBERG 3), Unni Støbet LANDE 2), Kristin SØRHEIM 2), Svein Olav Hvasshovd 4), Solveig Marie Stubsjøen 5) 1) NIBIO, Norwegian Institute of Bioeconomy Research, Gunnars veg 6, 6630 Tingvoll, Norway; lise.grova@nibio.no 2) Inland Norway University of Applied Sciences, Campus Evenstad, Elverum, Norway 3) NORSØK, Norwegian Centre for Organic Agriculture, Gunnars veg 6, 6630 Tingvoll, Norway; emma.brunberg@djurskyddet.se 4) NTNU, Norwegian University of Science and Technology, Trondheim, Norway 5) VETINST, Norwegian Veterinary Institute, Oslo, Norway More than two million sheep graze on unimproved, rough grazing land during the summer months each year in Norway. Free ranging sheep are perceived to experience high level of animal welfare through their opportunity to perform natural behaviour, but these benefits are compromised when sheep experience predator attacks, disease and accidents. Ensuring animal health and welfare in farming systems gets increased attention, and new policies and legislations are implemented. About 125 000 sheep (6-7%) are lost on such pastures every year. Tick-borne fever (TBF) is a disease considered to be a major challenge in sheep farming during the grazing season along the coast of south-western Norway. Clinical signs of TBF is ofte observed within 14 days of infection, starting with an abrupt rise in rectal temperature (often above 41o C). Being able to monitor farm animals on range pastures is increasingly important and implementing available technology for this purpose should be exploited. Implementation of sensor technology in rangeland sheep farming can monitor physiological parameters, such as body temperature (T). Integrating such sensors in a GPS tracking system may contribute to detect, locate and treat sick animals, as well as improve our knowledge of animal health in time and space in rangeland farming systems. The objective of the work presented here is to evaluate if a temperature sensor can be used for early detection of Tick-borne fever (TBF). In 2016, temperature sensors (Star Oddi, Iceland) were implanted in the abdomen of 20 lambs in a one sheep flock in a TBF risk area and in 20 lambs from one flock in a non-TBF risk area in Norway. The sensors were programmed to log temperature every 10 minutes, and were implanted in lambs in early June and collected in early September to retrieve data. Temperature data were obtained from 13 temperature loggers from lambs in the TBF risk are and 14 loggers in the non-TBF risk area. The telemetry system (Telespor, Norway) was used on all lambs, and provided accelerometer information and real-time positioning data that was used for continuous surveillance on range pasture. All animals were monitored twice a day for approximately one month period after turned out on tick infested pastures. Number and magnitude of fever was calculated for each lamb. Preliminary results from this study will be presented at the conference. Keywords: sheep, sensor technology, temperature, tick-borne fever, rangeland
Authors
Lise Grøva Boris Fuchs Emma Brunberg Unni Støbet Lande Kristin Sørheim Svein-Olaf Hvasshovd Solveig Marie StubsjøenAbstract
Can sensor technology and real-time communication detect tick-born fever in sheep on range pasture? Introduction: More than two million sheep graze on unimproved, rough grazing land during the summer months each year in Norway. Free ranging sheep are perceived to experience high level of animal welfare through their opportunity to perform natural behaviour, but these benefits are compromised when sheep experience predator attacks, disease and accidents. Ensuring animal health and welfare in farming systems gets increased attention, and new policies and legislations are implemented. About 125 000 sheep (6-7%) are lost on such pastures every year. Tick-borne fever (TBF) is a disease considered to be a major challenge in sheep farming during the grazing season along the coast of south-western Norway. Clinical signs of TBF is often observed within 14 days of infection, starting with an abrupt rise in rectal temperature (often above 41o C). Being able to monitor farm animals on range pastures is increasingly important and implementing available technology for this purpose should be exploited. Implementation of sensor technology in rangeland sheep farming can monitor physiological parameters, such as body temperature (T) and heart rate (HR). Integrating sensors that communicate in a GPS tracking system may contribute to detect, locate and treat sick animals, as well as improve our knowledge of animal health in time and space in rangeland farming systems. Sensors for sheep that communicate with a GPS system is not commercially available today. The objective of the work presented here is to evaluate if temperature sensor information can be used for early detection of tick-borne fever (TBF). Materials and methods: In 2016, temperature sensors (T) (CentiT Star Oddi, Iceland) were implanted in the abdomen of 20 lambs in a sheep flock in a TBF risk area (coastal herd) and in 20 lambs from one flock in a non-TBF risk area (inland heard) in Norway. The sensors were programmed to log temperature every 10 minutes, and were implanted in lambs in early June and collected in early September to retrieve data. The telemetry system (Telespor, Norway) was used on all lambs, and provided real-time positioning data that was used for continuous surveillance on range pasture. All lambs were monitored twice a day for clinical assessment for a one month period after they were turned out on pasture and weight was recorded at birth, spring and autumn. Remaining lambs in the coastal and inland flock were used as control for effect of sensor implantation on weight gain. Number of fever incidences and magnitude of fever was calculated by estimating area under curve (auc) for each temperature incidence for each lamb. Results: In total 32 (80 %) of 40 implanted T sensors could be retrieved. From the coastal herd 17 of 20 T sensors could be retrieved and from the inland herd 15 of 20 Tb sensors could be retrieved. All 17 retrieved T sensors from the coastal herd and all 15 sensors of the inland herd worked as programmed. All lost sensor were not detected at retrieval as no lambs were missing. Temperature of all lambs in both herds ranged from 36.9 °C to 41.8 °C with a mean of 39.6°C (SD 0.35). Sensor implantation did not affect weight gain. There was a significant difference in fever incidences and magnitude of fever in lambs in the TBF risk area (coastal heard) compared to the lambs in the non-TBF risk area (inland herd). Conclusion: The study shows that real-time temperature information in lambs has potential as a disease alarm.