Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Zbyněk Hrkal Ketil Haarstad David Rozman Jan Těšitel Drahomira Kušová Eva Novotná Miroslav VáňaAbstract
The fast development of laboratory methods has revealed increased amounts of trace concentrations of pharmaceuticals and personal care products (PPCP) in waste waters in the Czech Republic. This paper focuses on the expected costs to solve this problem by quaternary treatment of waste water based on activated carbon filtration. The one-time investment costs in 155 wastewater treatment plants (WWTPs) with a capacity of over 10 000 population equivalent (PE) would represent an amount of around 300 million EUR. The increase in end-user operat-ing costs would be 0.4 EUR/m3, which would mean a 15% increase in water and sewage costs. A sociological survey showed that most respondents (65%) would agree with an increase in price but only by 10%. Currently the cost of the qua-ternary treatment of wastewater is based primarily on estimates. Therefore changes in legislation leading to stricter limits and an increase in the efficiency of wastewater treatment should be preceded by additional applied research.
Abstract
Pathogenic soft rot Enterobacteriaceae (SRE) belonging to the genera Pectobacterium and Dickeya cause diseases in potato and numerous other crops. Seed potatoes are the most important source of infection, but how pathogen-free tubers initially become infected remains an enigma. Since the 1920s, insects have been hypothesized to contribute to SRE transmission. To validate this hypothesis and to map the insect species potentially involved in SRE dispersal, we have analyzed the occurrence of SRE in insects recovered from potato fields over a period of 2 years. Twenty-eight yellow sticky traps were set up in 10 potato fields throughout Norway to attract and trap insects. Total DNA recovered from over 2,000 randomly chosen trapped insects was tested for SRE, using a specific quantitative PCR (qPCR) TaqMan assay, and insects that tested positive were identified by DNA barcoding. Although the occurrence of SRE-carrying insects varied, they were found in all the tested fields. While Delia species were dominant among the insects that carried the largest amount of SRE, more than 80 other SRE-carrying insect species were identified, and they had different levels of abundance. Additionally, the occurrence of SRE in three laboratory-reared insect species was analyzed, and this suggested that SRE are natural members of some insect microbiomes, with herbivorous Delia floralis carrying more SRE than the cabbage moth (Plutella xylostella) and carnivorous green lacewing larvae (Chrysoperla carnea). In summary, the high proportion, variety, and ubiquity of insects that carried SRE show the need to address this source of the pathogens to reduce the initial infection of seed material.
Authors
Lars Vesterdal Lise Dalsgaard Inge Stupak Arezoo Taghizadeh-toosi Lars Elsgaard Jørgen E. OlesenAbstract
No abstract has been registered
Abstract
The boreal forest is a key ecosystem for global C sequestration and storage. Microorganisms in soil have crucial functions in regulating these processes. Fungi are typically sharply structured with soil depth, but we largely lack such information for other microorganism, including bacteria and other micro-eukaryotes. To improve our knowledge of how different microorganisms are structured vertically and how they might interact, we investi-gated the communities of bacteria, fungi and micro-eukaryotes in four different soil horizons in natural birch forests in Western Norway. The communities of all three organismal groups were strongly structured along the vertical depth. Our results support the hypothesis that natural decrease in nutrient availability and pH differ-ences between organic and mineral horizons affect the distribution of soil microorganisms. Proteobacteria, Actinobacteria and Planctomycetes dominated in the uppermost organic layer while Acidobacteria and Firmicu-tes in mineral layers. Proportionally, fungi dominated in mineral layers whereas other micro-eukaryotes (Meta-zoa, Apicomplexa, Conosa, Ochrophyta and Chlorophyta) in organic layers. Ascomycota were relatively more abundant in mineral layers compared to Basidiomycota and Cryptomycota. Nematoda, Annelida and Arthropo-da showed decreasing trends with depth. Furthermore, different optima in the depth distribution of ectomy-corrhizal and saprotrophic genera was observed, supporting the view that different genera are adapted to different niches along the soil depth gradient. Network analyses will be used to infer tentative biotic interac-tions between the microbial groups and how this varies with soil depth.
Abstract
No abstract has been registered
Authors
Annette Dathe Attila Nemes Matthew Patterson Anna Angyal Julia Szocs Szilvia Kendra Esther Bloem Daniel GimenezAbstract
No abstract has been registered
Authors
Marcin Strozecki Hanna Marika Silvennoinen Pawel Strzelinski Bogdan Heronim ChojnickiAbstract
It is important to quantify carbon decomposition to assess the reforestation impact on the forest floor C stocks. Estimating the loss of C stock in a short-term perspective requires measuring changes in soil respiration. This is not trivial due to the contribution of both soil microbes and vegetation to the measured CO2 flux. However, C stable isotopes can be used to partition the respiration and potentially to assess how much of the recalcitrant C stock in the forest floor is lost. Here, we measured the soil respiration at two forest sites where different regeneration methods were applied, along with an intact forest soil for reference. In so doing, we used a closed dynamic chamber for measuring respiration and the 13C composition of the emitted CO2. The chamber measurements were then supplemented with the soil organic carbon analysis and its δ13C content. The mean δ13C-CO2 estimates for the source of the CO2 were -26.4, -27.9 and -29.5‰, for the forest, unploughed and ploughed, respectively. The 13C of the soil organic carbon did, not differ significantly between sites. The higher soil respiration rate at the forest, as compared to the unploughed site, could be attributed to the autotrophic respiration by the forest floor vegetation.
Authors
Kjersti Holt HanssenAbstract
No abstract has been registered
Authors
Habtamu AlemAbstract
In this article, we estimate the progress of Total Factor Productivity (TFP) in the Norwegian grain production sector. Previous studies conducted in TFP estimation can be criticized for estimated production function relied on the assumption that the underlying technology is the same for all regions and firms face similar environmental conditions. In reality, agricultural firms in different regions resource endowment, adoption of new technology, and innovation might be different because of farmers face different production opportunities. For this study, we classified the country into two main grain producing regions with district level of development, and hence production technologies. We used farm level balanced panel data for 19 years (1996-2014) with 1463 observations from farms specialized in grain production. We applied the ‘true' fixed effect stochastic frontier model to estimate region level efficiency and source of productivity changes. The result of the analysis shows that there has been a productivity improvement in the sector, and technical change has had the main source of productivity change.
Authors
Habtamu AlemAbstract
No abstract has been registered