Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

Abstract

Quality aspects of food crops have been gaining increased attention at important regarding economic and health levels. Grain legumes have high potential for the nutritional improvement of foods, although to date, existing gaps of information on the compositional characteristics of legumes as feedstuffs and foodstuffs, as well as concerning technologies enabling the development of new food and feed products entail a reduced consumption. Recognizing this challenge, EUROLEGUME has addressed this topic by selecting the best legume varieties regarding their content in protein, amino acids, dry matter, ash, and total fats in a panel of underexplored varieties of faba bean (n = 10), pea (n = 16), and cowpea (n = 28). The results obtained on the proximate composition have identified nutritionally enhanced and genetically diverse germplasms. In this work it was identified the most promising genotypes of faba bean (‘Gloria’, ‘Džūkstes’, ‘Kučānes’, and ‘Aqua Dolce’), pea (‘Looming’, ‘k4171’, ‘k4831’,‘Eesti kollane söödahernes’, and ‘Bruno’), and cowpea (‘Vg50’, ‘Vg51’, ‘Vg56’, ‘Vg57’, ‘Vg58’, and ‘Vg59’) for the development of new attractive, convenient ready-to-eat, and tasty legume-based food formulations that will contribute to the diversification of healthier diets. In addition, in this work, significant differences were stated regarding the content in protein, total, essential, and non-essential amino acids between legumes grown in organic and conventional systems that allowed to highlight the relevance of the cropping system for the nutritional value of legumes.

Abstract

Understanding the influence of weathering factors and the material degradation mechanisms are fundamental for modelling the weathering process of wood. The goal of this work was to investigate the combined effect of time and exposure on the physical-chemical mechanisms of wood weathering. Four exposure directions (North, South, East and West) were investigated. Experimental tests were performed for 28 days through July, which according to previous research is considered as the most severe period for weathering of wood micro-sections. Measurements of samples included: photogrammetry, near and mid infrared spectroscopy, colour measurement, SEM observation and visual assessment. Parameters obtained by measuring the weathered surfaces with various sensors were compared with the subjective visual assessment by an expert evaluator. Algorithm based on multi sensor data fusion allowing calculation of the “weathering indicator” was developed. It was concluded that the progress of degradation is clearly correlated to the solar radiation and the exposure direction seems to have a clear effect on the degradation intensity.

Abstract

Copper in low natural concentrations is essential for cell metabolism but in excess it becomes extremely toxic to aquatic life, including to the early life stages of marine macroalgae. This work determined the effects of copper exposure on meiospore development of two kelp species, the native Macrocystis pyrifera and invasive Undaria pinnatifida. After settlement, meiospores were exposed to nominal copper concentrations of control (no added copper), 100, 200, 300 and 400 μg L−1 Cu for 9 days. Inductively coupled plasma mass spectrometry of total dissolved copper (CuT) concentrations in the blanks showed that nominal copper concentrations were reduced to 54, 91, 131 and 171 μg L−1 CuT, respectively, indicating that > 50% of the dissolved copper was adsorbed onto the culture vessel walls. In the media with meiospores, the dissolved copper concentrations decreased to 39, 86, 97 and 148 μg L−1 CuT in M. pyrifera and to 39, 65, 97 and 146 μg L−1 CuT in U. pinnatifida, indicating that 6–15% of the dissolved copper was adsorbed by the cells. For both species, meiospores germinated in all copper treatments, with germination decreasing with increasing copper concentration. However, gametophyte growth and sexual differentiation were arrested under all copper treatments. The effective copper concentration causing 50% of arrested germination (Cu-EC50) was 157 and 231 μg L−1 CuT for M. pyrifera and U. pinnatifida, respectively. The higher Cu-EC50 for U. pinnatifida suggests ecological success for the invasive species in copper-polluted environments; however, the subsequent inhibition of gametogenesis under all copper treatments indicated no difference in copper tolerance between both kelp early life stages. We compare our results with the literature available on the effects of copper on the development of early life stages of brown seaweed (Laminariales and Fucales) and discuss the importance of reporting actual experimental dissolved copper concentrations and the necessity of standardizing the response variables measured in macroalgal copper ecotoxicology.

Abstract

Important losses in strawberry production are often caused by the oomycete Phytophthora cactorum, the causal agent of crown rot. However, very limited studies at molecular levels exist of the mechanisms related to strawberry resistance against this pathogen. To begin to rectify this situation, a PCR-based approach (NBS profiling) was used to isolate strawberry resistance gene analogs (RGAs) with altered expression in response to P. cactorum during a time course (2, 4, 6, 24, 48, 96 and 192 h post-infection). Twenty-three distinct RGA fragments of the NB-LRR type were identified from a resistance genotype (Bukammen) of the wild species Fragaria vesca. The gene transcriptional profiles after infection showed that the response of most RGAs was quicker and stronger in the resistance genotype (Bukammen) than in the susceptible one (FDP821) during the early infection stage. The transcriptional patterns of one RGA (RGA109) were further monitored and compared during the P. cactorum infection of two pairs of resistant and susceptible genotype combinations (Bukammen/FDP821 and FDR1218/1603). The 5′ end sequence was cloned, and its putative protein was characteristic of NBS-LRR R protein. Our results yielded a first insight into the strawberry RGAs responding to P. cactorum infection at molecular level.

Abstract

Large areas of cultivated grassland are annually abandoned and no longer used for production in Norway. Such areas will over time be encroached by shrubs and trees, which is regarded as undesirable. We assessed plant community development, pasture production, herbage quality and pasture utilization by sheep and heifers of a grassland that has been unmanaged for 12 years. e experiment was run for two consecutive years. Sheep grazed the whole area for one month in spring and autumn. During the summer, the area was assigned to three replicated treatments: (1) control with no management; (2) grazing heifers; and (3) grazing sheep with off€spring. The stocking rate was 1.8 LU ha-1, in both b and c, for a duration of one month. The area was left resting for a month aer treatment and before autumn sheep grazing. Pasture production and herbage intake was estimated using grazing exclosure cages. Herbage consumed during summer period was on average 211 g DM m-2 and the pasture utilization was 55%. The annual consumption and utilization was 336 g DM m-2 and 62% in the grazed treatments and 28 g DM m-2 and 15% in the control, respectively. Total annual pasture production was on average 72% higher in the grazed treatments compared to the control. Tere was no diff€erence between the grazed treatments on annual production, herbage intake or pasture utilization. Grazing stimulated herbage production, and such abandoned grasslands are valuable forage resources.