Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

To document

Abstract

Biochar and its properties can be significantly altered according to how it is produced, and this has ramifications towards how biochar behaves once added to soil. We produced biochars from corncob and miscanthus straw via different methods (slow pyrolysis, hydrothermal and flash carbonization) and temperatures to assess how carbon cycling and soil microbial communities were affected. Mineralization of biochar, its parent feedstock, and native soil organic matter were monitored using 13C natural abundance during a 1-year lab incubation. Bacterial and fungal community compositions were studied using T-RFLP and ARISA, respectively. We found that persistent biochar-C with a half-life 60 times higher than the parent feedstock can be achieved at pyrolysis temperatures of as low as 370 °C, with no further gains to be made at higher temperatures. Biochar re-applied to soil previously incubated with our highest temperature biochar mineralized faster than when applied to unamended soil. Positive priming of native SOC was observed for all amendments but subsided by the end of the incubation. Fungal and bacterial community composition of the soil-biochar mixture changed increasingly with the application of biochars produced at higher temperatures as compared to unamended soil. Those changes were significantly (P < 0.005) related to biochar properties (mainly pH and O/C) and thus were correlated to pyrolysis temperature. In conclusion, our results suggest that biochar produced at temperatures as low as 370 °C can be utilized to sequester C in soil for more than 100 years while having less impact on soil microbial activities than high-temperature biochars.

To document

Abstract

Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar’s effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar’s contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.

To document

Abstract

In this chapter we will focus on the tick Ixodes ricinus, with its main geographical distribution in Europe. It is known to transmit a variety of pathogens, among them Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis. Tick population control is one of the measures to reduce the incidence of tick-borne diseases. Due to non-target effects of chemical acaricides, acquired resistance against chemical acaricides and increased regulations, there is a demand for sustainable control measures that may be used in integrated vector management (IVM) of ticks. This chapter describes and evaluates the present knowledge on biological control of I. ricinus as an alternative to the use of chemical acaricides. Biological control makes use of living organisms (e.g. fungi, bacteria, nematodes, invertebrate predators, parasitoids) to suppress a pest population. The natural occurrence of these organisms in I. ricinus and the use of these organisms as biological control agents against I. ricinus are reviewed. Entomopathogenic fungi (Beauveria and Metarhizium spp.) are the most commonly used biocontrol agents against ticks. A variety of nematode species are also shown to be effective against different tick species, but the knowledge on the operational use of invertebrate predators and parasitoids to control ticks is limited. We conclude that there are several candidates for the biological control of ticks, but that the knowledge on the natural occurrence and efficacy of these to control I. ricinus populations is very limited. There is, therefore, a need of more studies on naturally occurring enemies of I. ricinus to be able to suggest possible biocontrol candidates. These candidates should be tested in controlled laboratory and field studies with the aim to develop elegant, precise and effective biocontrol strategies for the control of I. ricinus that may be used alone or in combination with other control strategies in IVM.

Abstract

Aphids in cereals are an important problem in Europe. Entomopathogenic fungi in the Phylum Entomophthoromycota are among their natural enemies. Under certain conditions, they can cause epizootic events and control pest aphid populations. This epizootic development is affected by many abiotic and biotic factors such as aphid species and their host plant (including weeds within the crop), fungal species and isolates, and temperature. Studies from Denmark, UK, Slovakia and suggest that the genus Pandora is the most prevalent fungal pathogen of the English grain aphid (Sitobion avenae). Which fungal species that is the most prevalent in populations of the other important aphid species in cereals in Europe, the Bird cherry-oat aphid (Rhopalosiphum padi), is less clear. We chose, however, to use Pandora to assess the biological control potential of Entomophthoromycota against aphids in cereals and to produce data that might be used in a pest-warning model incorporating the effect of this natural enemy. This was done by conducting laboratory studies on the virulence of two Pandora isolates (collected in the same field) on R. padi and Myzus persicae at three temperatures (12, 15 and 18◦C). M. persicae is a polyphagous aphid that may be present on weeds. It can be an alternative host for Pandora and hence might also affect the epidemic development of Pandora in aphids that are cereal pests. Our preliminary results show that R. padi is more resistant to the tested Pandora isolates than M. persicae. The two Pandora isolates had different virulence in the two aphid species tested. The temperature did not influence the virulence.