Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.

To document

Abstract

European pulse production faces a continued loss of cultivated area along with decreasing or stagnant yields. Vicia faba is a traditional legume with high genetic diversity cultivated in a wide range of European climates. Therefore V. faba is promising to identify stable and high yielding genotypes for specific target environments. The Nordic-Baltic region is challenging for legume growing due to short vegetation period and heat/drought stress in continental climates. Within the pan-European Eurolegume project a set of 18 V. faba accessions containing var. minor and major local landraces and modern cultivars of different geographical origin was evaluated in multi-environmental trials. The aim of this study was to identify ideotypes for Northern Europe and reveal key phenotypic traits conferring high yield potential and stability. Four target environmental clusters represented the range of Nordic growing conditions with yield levels from 128 gm−2 to 380 gm−2. Multivariate classification differentiated distinctive groups of var. minor and var. major accessions with few overlapping genotypes, the former having higher average yield, taller structure, more pods per node and longer flowering duration. Late sowing under long-day conditions above 55°N latitudes resulted in early flowering due to short vegetative development (650 °Cd). Extended flowering duration and tall stature were the most important traits conferring high yields. A negative trade-off between yield potential and yield stability was detected, with yield advantages of stress resistant genotypes only in a limited range of low yielding target environments (< 180 gm−2). The highest yielding accessions (Latvian var. minor landrace Bauska and var. major landrace Cēres) represented a favourable combination of yield potential and stability. High temperatures at flowering, within a range of average maximum July temperatures between 20.5–24.5 °C, were identified as most critical environmental variable depressing yield levels between 38.5 (var. major) and 56.2 (var. minor) gm−2 °C−1. It was concluded that Baltic landraces are promising ideotypes, with adapted flowering phenology and morphological structure, for increased V. faba yields in Nordic target environments.

To document

Abstract

Despite the dramatic phenological responses of fungal fruiting to recent climate warming, it is unknown whether spatial distributions of fungi have changed and to what extent such changes are influenced by fungal traits, such as ectomycorrhizal (ECM) or saprotrophic lifestyles, spore characteristics, or fruit body size. Our overall aim was to understand how climate and fungal traits determine whether and how species‐specific fungal fruit body abundances have shifted across latitudes over time, using the UK national database of fruiting records. The data employed were recorded over 45 yr (1970–2014), and include 853 278 records of Agaricales, Boletales and Russulales, though we focus only on the most common species (with more than 3000 records each). The georeferenced observations were analysed by a Bayesian inference as a Gaussian additive model with a specification following a joint species distribution model. We used an offset, random contributions and fixed effects to isolate different potential biases from the trait‐specific interactions with latitude/climate and time. Our main aim was assessed by examination of the three‐way‐interaction of trait, predictor (latitude or climate) and time. The results show a strong trait‐specific shift in latitudinal abundance through time, as ECM species have become more abundant relative to saprotrophic species in the north. Along precipitation gradients, phenology was important, in that species with shorter fruiting seasons have declined markedly in abundance in oceanic regions, whereas species with longer seasons have become relatively more common overall. These changes in fruit body distributions are correlated with temperature and rainfall, which act directly on both saprotrophic and ECM fungi, and also indirectly on ECM fungi, through altered photosynthate allocation from their hosts. If these distributional changes reflect fungal activity, there will be important consequences for the responses of forest ecosystems to changing climate, through effects on primary production and nutrient cycling.

To document

Abstract

In the Nordic-Baltic region, there has been a growing concern about an increasing occurrence of multiple tops in young stands of Norway spruce. There is however a lack of documentation on the amount of such damages, and the causal agents involved. In two separate studies in SE Norway, we assessed the frequency of multiple tops in young sapling-sized stands, and studied the relationship between the occurrence of multiple tops and lammas growth the previous growing season on the sample trees. Study 1 included 44 planted and 10 naturally regenerated stands, while Study 2 included 68 planted stands with information on seed source. Among sample trees with multiple tops, 57% (Study 1) and 32% (Study 2) had signs of lammas growth the previous autumn, either in the form of an extended leading shoot or swollen bud. Site index as well as sample tree height were positively correlated to the occurrence of both lammas growth and multiple tops in both studies. In Study 1 we show that the probability of lammas growth was significantly higher in planted than in naturally regenerated stands. In Study 2 we show that it was higher in stands planted with seedlings grown from stand-origin seeds compared with improved seed material. Furthermore, the results of both studies show that lammas growth occurs most frequently among the dominant trees in the stand.

Abstract

Unmanned aerial vehicles (UAVs) are increasingly used as tools to perform a detailed assessment of post-harvest sites. One of the potential use of UAV photogrammetric data is to obtain tree-stump information that can then be used to support more precise decisions. This study developed and tested a methodology to automatically detect, segment, classify, and measure tree-stumps. Among the potential applications for single stump data, this study assessed the possibility (1) to detect and map root- and butt-rot on the stumps using a machine learning approach, and (2) directly measure or model tree stump diameter from the UAV data. The results revealed that the tree-stumps were detected with an overall accuracy of 68–80%, and once the stump was detected, the presence of root- and butt-rot was detected with an accuracy of 82.1%. Furthermore, the root mean square error of the UAV-derived measurements or model predictions for the stump diameter was 7.5 cm and 6.4 cm, respectively, and with the former systematically under predicting the diameter by 3.3 cm. The results of this study are promising and can lead to the development of more cost-effective and comprehensive UAV post-harvest surveys.