Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

Acetylation of wood can provide protection against wood deteriorating fungi, but the exact degradation me- chanism remains unclear. The aim of this study was to determine the effect of acetylation of Pinus radiata wood (weight percent gain 13, 17 and 21%) on the expression of genes involved in decay by brown-rot fungus Rhodonia placenta. Gene expression analysis using qRT-PCR captured incipient to advanced decay stages. As expected the initiation of decay was delayed as a result the degree of acetylation. However, once decay was established, the rate of degradation in acetylated samples was similar to that of unmodi fied wood. This suggests a delay in decay rather than an absolute protection threshold at higher acetylation levels. In accordance with previous studies, the oxidative system of R. placenta was more active in wood with higher degrees of acetylation and expression of cellulose active enzymes was delayed for acetylated samples compared to untreated samples. The reason for the delay in the latter might be because of the slower diffusion rate in acetylated wood or that partially acetylated cellobiose may be less effective in triggering production of saccharification enzymes. Enzymes involved in hemicellulose and pectin degradation have previously not been focused on in studies of degradation of acetylated wood. Surprisingly, CE16 carbohydrate esterase, assumed to be involved in deace- tylation of carbohydrates, was expressed significantly more in untreated samples compared to highly acetylated samples. We hypothesise that this enzyme might be regulated through a negative feedback system, where acetic acid supresses the expression. The up-regulation of two expansin genes in acetylated samples suggests that their function, to loosen the cell wall, is needed more in acetylated wood due the physical bulking of the cell wall. In this study, we demonstrate that acetylation affects the expression of specific target genes not previously re- ported, resulting in delayed initiation of decay. Thus, targeting these degradation mechanisms can contribute to improving wood protection systems.

To document

Abstract

Multilocation testing remains the main tool for understanding varietal responses to the environment. Here, Latvian and Norwegian hull-less and hulled barley varieties were tested in field experiments in Latvia and Norway in order to assess the varieties adaptability across environments (sites). Two Latvian (cv Irbe and cv Kornelija) and one Norwegian hull-less barley variety (cv Pihl) were tested along with one Latvian (cv Rubiola) and one Norwegian hulled barley variety (cv Tyra) under conventional and organic management systems. The grain yield, together with physical and chemical grain parameters were compared, and variety yield and protein stability detemined. Overall, grain yield of hull-less barley varieties was significantly lower than for hulled barley varieties regardless of climatic conditions and management system. However, in the organic farming systems this difference between barley types was less pronounced. The hull-less barley varieties cv Pihl and cv Irbe, along with both hulled varieties, had good yield stability across environments and were well adapted to both cropping systems. Hull-less barley varieties tended to contain more protein and β -glucans than hulled barley varieties. Despite being bred for local conditions in Norway and Latvia, our study shows that all the varieties used may be successfully transferred across countries.

To document

Abstract

Climate change adversely affects the determinants of agriculture. Adaptation serves as an important strategy to reduce the adverse effects of climate change (variability) and vulnerability of the people. Adaptation through an innovation programme was implemented for 4 years during 2012–2016 to improve the adaptive capacity in agriculture and the water sectors through capacity building and implementation in the Krishna River Basin, India. Primary data were collected from 178 farm households of the Nagarjuna Sagar Project command area covering both adopters and non‐adopters of water‐saving interventions from the study area. The double difference method was used to analyse the impact of adaptation through capacity building and implementation. The water‐saving interventions include alternate wetting and drying (AWD) in rice, a modified system of rice intensification (MSRI) and direct seeding of rice (DSR). The capacity building and water saving increased crop yields by 0.96, 0.93 and 0.77 t ha−1 through AWD, MSRI and DSR respectively. The three practices have increased farmers’ income and decreased the cost of cultivation in DSR by Rs.11 000 (US$169) ha−1. The methods can be more focused in canal commands on a larger scale for equal distribution of water to all the head, middle and tail‐end regions.

To document

Abstract

Worldwide semi-natural habitats of high biological value are in decline. Consequently, numerous AgriEnvironment Schemes (AESs) intended to halt biodiversity loss within these habitats have been implemented. One approach has been the application of “adaptive management”, where scientific knowledge is applied alongside the traditional ecological knowledge (TEK) of stakeholders in order to establish an integrated approach that is adjusted as outcomes are assessed. In this paper we examine the effectiveness of the adaptive management approach of Norway’s Action Plan for Hay Meadows (APHM). Twenty-nine hay meadows from fourteen farms in the county of Møre og Romsdal were ecologically surveyed over a 2 year period. Interviews were also conducted with owners and land managers to explore TEK and management issues. The interdisciplinary study found that the disembedding of hay meadow management from its initial commercial purpose (in particular the loss of much of the livestock from the region) has contributed to a significant loss of TEK – which is now largely limited to knowledge of how the fields were managed recently. While, the APHM is limiting biodiversity decline by promoting traditional practices there were indications that the standardisation of management actions might negatively affect species composition in the long term. More critically, continued farm abandonment within the region means that without alternatives to management by farmers many of these meadows are likely to disappear in the next couple of decades. We conclude that adaptive management provides an effective short-term means of preserving hay meadows, but long term conservation will require a means of addressing the continued decline of local farming communities.

To document

Abstract

PREMISE OF THE STUDY: Genetic differentiation in plant species may result from adaptation to environmental conditions, but also from stochastic processes. The drivers selecting for local adaptation and the contribution of adaptation to genetic differentiation are often unknown. Restoration and succession studies have revealed different colonization patterns for Brachypodium retusum, a common Mediterranean grass. In order to understand these patterns, we tested population differentiation and adaptation to different environmental factors. METHODS: Structured sampling of 12 populations from six sites and two soil types within site was used to analyze the spatial and environmental structure of population differentiation. Sampling sites differ in grazing intensity and climate. We tested germination and growth in a common garden. In subsets, we analyzed the differential response to stone cover, grazing and soil moisture. KEY RESULTS: We found significant differences among populations. The site explained population differentiation better than soil, suggesting a dominant influence of climate and/or genetic drift. Stone cover had a positive influence on seedling establishment, and populations showed a differential response. However, this response was not related to environmental differences between collection sites. Regrowth after clipping was higher in populations from the more intensively grazed Red Mediterranean soils suggesting an adaptation to grazing. Final germination was generally high even under drought, but germination response to differences in soil moisture was similar across populations. CONCLUSIONS: Adaptive population differentiation in germination and early growth may have contributed to different colonization patterns. Thus, the provenance of B. retusum needs to be carefully considered in ecological restoration.